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About me

• Links:


• GitHub: @st0012 Twitter: @_st0012


• ruby.social: @st0012


• https://st0012.dev

• Ruby Developer Experience Team

• Maintainer of IRB, Reline, and sentry-ruby
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Why?

• Familiarise yourself with debugging tools

• Grasp debugger implementation for informed usage decisions

• Learn to build custom debugging tools



Overview

• 5 steps with


• Demo


• Implementation overview


• A complementary GitHub repository



0. Key components

• Binding objects and Kernel#binding


• TracePoint class


• Reline library



Binding & Kernel.binding

• Objects of class Binding encapsulate the execution context at some particular 
place in the code and retain this context for future use.


• If you get a Binding object, likely through Kernel#binding, you can access the 
context it captures.

https://docs.ruby-lang.org/en/3.2/Binding.html
















TracePoint & line event
• TracePoint allows you to trace different type of Ruby execution events. 


• E.g. :raise, :call, :line…etc.


• The :line event is triggered by line executions, which has access to:


• Line number


• File path


• Binding

















TracePoint

• Convenient for debugging, but bad for performance


• Most TracePoint events cancel out YJIT’s optimisation


• Don’t use it in production



Reline

• Powers essential Ruby tools: IRB and ruby/debug


• Feature-rich with capabilities like:


• Autocompletion


• Multi-line input


• Input history


•  (Note: We won't be utilising these advanced features in this talk)
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Steps

1. Breakpoint and REPL (binding.debug)


2. Step-in (step)


3. Step-over (next)


4. Breakpoint commands (break and delete)


5. Debugger executable (exe/debug)





1. Breakpoint and REPL

• Stop program execution with binding.debug


• Open a REPL (Read-eval-print loop)


• Supports commands to continue or exit the program











































2. Step-in

• Once received step, the debugger steps to the next program execution


• Allows us to move deeper into the program

























❌ Debugger execution


❌ Standard/default libraries


❌ Ruby internal


✅ Their program’s next execution











3. Step-over

• Once received next, the debugger steps to the next line


• Skip detail executions

































4. Breakpoint commands

• Add/remove breakpoints without modifying the program


• Greatly increase the range of movement (e.g. debug gems without bundle 
open)



• break <file>:<num> and break <num> to add breakpoints


• break to list breakpoints


• delete <id> to delete breakpoints
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Add breakpoints

List breakpoints



Delete breakpoints











How does ruby/debug avoid this?

• Collects ISeq objects from ObjectSpace


• Locates the ISeq object of the breakpoint location


• Uses heuristic to check which line is best to stop the program


• Activates TracePoint on that ISeq object’s specific line



How does ruby/debug avoid this?

• Collects ISeq objects from ObjectSpace


• Locates the ISeq object of the breakpoint location


• Uses heuristic to check which line is best to stop the program


• Activates TracePoint on that ISeq object’s specific line

• Reduces runtime overhead with more sophisticated breakpoint activation



🎉🍶🍻







5. Debugger executable

• Debug without requiring the debugger


• $ exe/debug app.rb runs app.rb with debugger required


• Stop at the beginning of the program to receive further instructions (e.g. 
breakpoint commands)









$ exe/debug app.rb
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exe/debug

$ exe/debug app.rb

$ RUBYOPT="-Ilib -rdebugger" ruby app.rb



exe/debug

$ exe/debug app.rb

$ RUBYOPT="-Ilib -rdebugger" ruby app.rb

lib/debugger.rb
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Recap

Reline

Binding



Recap

TracePoint

Step-over

Step-in



Recap

Breakpoint commands

$ exe/debug



How to choose debugging tools?
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What CAN’T the debugger debug?

• Itself


• Reline


• Standard libraries


• CRuby (e.g. TracePoint, Binding)



Side-effects

• TracePoint


• Tracks and retains data


• Stop/resume threads



Ruby programs (e.g. Rails app)

Puts? Debuggers?

CRuby

Standard Libraries

Level of abstraction
Gems

❌ debugger written in Ruby
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Ruby programs (e.g. Rails app)

Puts? Debuggers?

CRuby

Standard Libraries

ruby/debug

byebug

Level of abstraction

puts
Gems

gdb

lldb

IRB

Ruby LSP



GitHub Repo

https://github.com/st0012/mini-debugger



Next Steps

• Make step and next accept a <n> argument


• e.g. step 2 does 2 steps


• Implement catch command


• Breakpoints triggered when an exception is raised


• Implement finish command


• Finish the current frame



Thanks for listening


