Build a mini Ruby debugger in
under 300 lines

Stan Lo

Q) shopify

Build a mini Ruby debugger in
under 360 200 lines

Stan Lo

Q) shopify

About me

About me

About me

— IS Ruby LSP .25

Shopify D 118,642 . 0.0.6.0.46)

® RU by Developer EXpe rience Team l VS Code plugin for connecting with the Ruby LSP

Reload Required Disable‘v Uninstalll\/ SR

This extension is enabled globally.

About me

—p SIS Ruby LSP ve.2.s
Shopify D 118,642 . 0.0.6.0.46)

® RU by Developer EXpe rience Team l VS Code plugin for connecting with the Ruby LSP

Reload Required Disable‘v Uninstalll\/ SR

This extension is enabled globally.

Code indexing: How language

servers understand our code

About me

— IS Ruby LSP .25

Shopify D 118,642 . 0.0.6.0.46)

® RU by Developer EXpe rience Team l VS Code plugin for connecting with the Ruby LSP

Reload Required Disable‘v Uninstalll\/ SR

This extension is enabled globally.

Gradual typing for Ruby:
comparing RBS and RBI/Sorbet

About me

Ruby LSP ve.2:s

Shopify D 118,642 . 0.0.0.0.46)

N

\W

VS Code plugin for connecting with the Ruby LSP

e Ruby Developer Experience Team

Reload Required Disable |\ Uninstall v <> 5%

This extension is enabled globally.

® Maintainer of IRB, ,and

& rubyfirb | Public & ruby/reline | Public
interactive Ruby The compatible library with the API of Ruby's stdlib 'readline’

Ruby X257 % 81 Ruby ¥ 174

& getsentry/sentry-ruby ' Public

& ruby/debug ' Public

Debugging functionality for Ruby Sentry SDK for Ruby

% 100 Ruby Yrs876 % 456

About me

N

\W

Ruby LSP ve.2:s

Shopify D 118,642 . 0.0.0.0.46)
Ru by Developer EXpe rience Team I VS Code plugin for connecting with the Ruby LSP

Reload Required Disable |\ Uninstall v <> 5%

O Ma | nta | ner Of , , a nd This extension is enabled globally.

® Links:

& rubyfirb | Public 3 & ruby/reline | Public
The compatible library with the API of Ruby's stdlib 'readline’

Ruby Y174 % 65

o GitHub: @st0012 Twitter: @ st0012

& ruby/debug ' Public $ (] getsentry/sentry-ruby | Public

Debugging functionality for Ruby Sentry SDK for Ruby

Ruby Y876 % 456

® ruby.social: @st0012

e https://st0012.dev

ruby/debug

The best investment for your productivity

2022-09-09

Q) shopify

Why?

® Familiarise yourself with debugging tools

Why?

® Familiarise yourself with debugging tools

® Grasp debugger implementation for informed usage decisions

Why?

® Familiarise yourself with debugging tools
® Grasp debugger implementation for informed usage decisions

® |Learn to build custom debugging tools

Overview

® 5 steps with
® Demo
® |mplementation overview

e A complementary GitHub repository

0. Key components

objects and
class

library

Binding & Kernel.binding

® (Objects of class encapsulate the execution context at some particular
place in the code and retain this context for future use.

® |f you geta object, likely through , YOu can access the
context it captures.

https://docs.ruby-lang.org/en/3.2/Binding.html

1 class Foo

2 def initialize
@name = "foo"

end

def get_binding(x)
binding
end
end

© 00 N O U1 &~ W

10

11 puts binding.eval("self") #=> main

12

13 b = Foo.new.get_binding("bar")

14 puts b.eval("self") #=> #<Fo00:0x00007f9b1ladb0ec60>

15 puts b.eval("@name") #=> "foo"

16 puts b.eval("x") #=> "bar"

17 puts b.source_location.to_s #=> ["examples/binding.rb", 7]

1 class Foo

2 def initialize
@name = "foo"

end

def get_binding(x)
binding
end
end

© 00 N O U1 &~ W

10

11puts binding.eval("self") #=> main

e ——

13 b = Foo.new.get_binding("bar")

14 puts b.eval("self") #=> #<Fo00:0x00007f9b1ladb0ec60>

15 puts b.eval("@name") #=> "foo"

16 puts b.eval("x") #=> "bar"

17 puts b.source_location.to_s #=> ["examples/binding.rb", 7]

1 class Foo

2 def initialize
@name = "foo"

end

def get_binding(x)
binding
T
end

© 00 N O U1 &~ W

10

11 puts binding.eval("self") #=> main

12

13b = Foo.new.get_binding("bar")

14 puts b.eval("self") #=> #<F00:0x00007f9b1a0b0e60>

15 puts b.eval("@name") #=> "foo"

16 puts b.eval("x") #=> "bar"

17 puts b.source_location.to_s #=> ["examples/binding.rb", 7]

1 class Foo

2 def initialize
@name = "foo"

end

def get_binding(x)
binding
end
end

© 00 N O U1 &~ W

10

11 puts binding.eval("self") #=> main

12

13 b = Foo.new.get_binding("bar")

14 puts b.eval("self") #=> #<F00:0x00007f9b1a0dboe60>

15 puts b. eval("@name") #=> "foo"

16 puts b.eval("x") #=> "bar"

17 puts b.source_location.to_s #=> ["examples/binding.rb", 7]

1 class Foo

2 def initialize
@name = "foo"

end

def get_binding(x)
binding
end
end

© 00 N O U1 &~ W

10

11 puts binding.eval("self") #=> main

12

13 b = Foo.new.get_binding("bar")

14 puts b.eval("self") #=> #<F00:0x00007f9b1a0dboe60>

15 puts b eval("@name") #— ‘* "foo" ‘

16 puts b.eval("x") #=> bar"

17 puts b.source_location.to_s #=> ["examples/binding.rb", 7]

1 class Foo

2 def initialize
@name = "foo"

end

def get_binding(x)
binding
end
end

© 00 N O U1 &~ W

10

11 puts binding.eval("self") #=> main

12

13 b = Foo.new.get_binding("bar")

14 puts b.eval("self") #=> #<Fo00:0x00007f9b1ladb0ec60>

15 puts b.eval("@name") #=> "foo"

16 puts b.eval("x") #=> "bar"

tr7pré'b;éduréé;ibtétiOh;to;s #=> ["examples/binding.rb", 7]

1 class Foo

2 def initialize
@name = "foo"

end

def get_binding(x)
binding
end
end

© 00 N O U1 &~ W

10

11 puts binding.eval("self") #=> main

12

13 b = Foo.new.get_binding("bar")

14 puts b.eval("self") #=> #<Fo00:0x00007f9b1ladb0ec60>

15 puts b.eval("@name") #=> "foo"

16 puts b.eval("x") #=> "bar"

17 puts b.source_location.to_s #=> ["examples/binding.rb", 7]

TracePoint & line event

o allows you to trace different type of Ruby execution events.
® E.go.)etc.
® The event is triggered by line executions, which has access to:

® Line number
® File path

def greeting(word)
puts "Hello #{word}!'"
end

TracePoint.trace(:line) do |tp]
puts "#{tp.path}:#{tp.lineno} is being executed. Locals: #{tp.binding.local variables}"
end

O 0O NO Ul &~ WDN -

greeting("RubyKaigi")

def greeting(word)
puts "Hello #{word}!'"
end

TracePoint.trace(:line) do |tp]
puts "#{tp.path}:#{tp.lineno} is being executed. Locals: #{tp.binding.local variables}"
end

O 0O NO Ul &~ WDN -

greeting("RubyKaigi®)

def greeting(word)
puts "Hello #{word}!'"
end

{TratéPoiht}fréce(ilihé)db’]tp}'"“”’”"’"“"""”‘”"”“'"‘““"‘“””""“’“"“”
puts "#{tp.path}:#{tp.lineno} is being executed. Locals: #{tp.binding.local_variables}"|
lend |

greeting("RubyKaigi")

eoeo
def greeting(word)

puts "Hello #{word}!'"
end

TracePoint.trace(:line) do |tp]
puts "#{tp.path}:#{tp.lineno} is being executed. Locals: #{tp.binding.local variables}"
end

O 0O NO Ul &~ WDN -

greeting("RubyKaigi")

def greeting(word)
puts "Hello #{word}!'"
end

{TratéPoiht}fréce(ilihé)db’]tp}'"“”’”"’"“"""”‘”"”“'"‘““"‘“””""“’“"“”
puts "#{tp.path}:#{tp.lineno} is being executed. Locals: #{tp.binding.local_variables}"|
lend |

greeting("RubyKaigi")

def greeting(word)
puts "Hello #{word}!"
end

TracePoint.trace(:1line) do |tp]
puts "#{tp.path}:#{tp.lineno} is being executed. Locals: #{tp.binding.local variables}"
end

© 00O N O Ul &~ W NN K- O

greeting("RubyKaigi")

"examples/trace_point.rh:9 is being executed. Locals: []1 |
| examples/trace_point.rb:2 is being executed. Locals: [:word] |
| Hello RubyKaigi! =~

def greeting(word)
puts "Hello #{word}!"
end

TracePoint.trace(:line) do |tp]|
puts "#{tp.path}:#{tp.lineno} is being executed. Locals: #{tp.binding.local_variables}"
on vl uinoitebeaioniiy. Sunbribratis— etttk

© 00O N O Ul &~ W NN K- O

greeting("RubyKaigi")

“examples/trace_point.zb:9 is being executed. Locals: [1 |
| examples/trace_point.rb:2 1is being executed. Locals: [:word] |
| Hello RubyKaigi!

TracePoint

® Convenient for debugging, but bad for performance

® Most TracePoint events cancel out YJIT’s optimisation

Reline

® Powers essential Ruby tools: and
® Feature-rich with capabilities like:

® Autocompletion

® Multi-line input

® |nput history

® (Note: We won't be utilising these advanced features in this talk)

Reline - Example

1 require "reline"
2
puts 'This 1s echo program by Reline.'

while line = Reline.readline("echo> ")
case line.chomp
when ‘'exit'
exit 0

else
10 puts "=> #{linel}"
11 end
12 end

Reline - Example

1 require "reline"
2 = 7

puts 'This 1s echo program by Reline.'

(While Tine = Reline.readline("echos ™|
' case line.chomp }
when ‘'exit'

exit 0
else

puts "=> #{linel}"

3
4

5

6
7|
8 |
9 i
10}
1Y

Reline - Example

1 require "reline"
2
puts 'This 1s echo program by Reline.'

while line = Reline.readline("echo> ")
case line.chomp
when ‘'exit'
exit O

else
10 puts "=> #{line}"
11 end
12 end

Reline - Example

LN
1 require "reline"

puts 'This 1s echo program by Reline.'

while line Reline,readline("echo> ")
lcase line.chomp |

éwhen 'exit’
i exit 0

lelse]
| puts "=> #{line}"|

Reline - Example

1 require "reline"
2
puts 'This 1s echo program by Reline.'

while line = Reline.readline("echo> ")
case line.chomp
when ‘'exit'
exit 0

else
10 puts "=> #{linel}"
11 end
12 end

Reline - Example

1 require "reline"
2
puts 'This 1s echo program by Reline.'

while line = Reline.readline("echo> ")
case line.chomp
when ‘'exit'
exit 0

else
10 puts "=> #{linel}"
11 end
12 end

4.

Breakpoint and REPL (

. Step-in ()

. Step-over ()

Breakpoint commands (

Debugger executable (

Steps

and)

1 def fib(num)
1T num < 2
num
else
fib(num-1) + fib(num-2)
end

fib(6)
fib(7)
llputs a + b

1. Breakpoint and REPL

® Stop program execution with
® Open a REPL (Read-eval-print loop)

® Supports commands to or the program

1 require "debugger"
2
def fib(num)
1f num < 2
num
else

fib(num—1)+'fib(num—2)
end
10 end
11
12a = fib(6)
13b = fib(7)
14 puts a + b

)
frozen_string_literal: true

require "reline"

module Debugger
class Session
def suspend!(binding)
display_code(binding)

WO NOUE WNR O

while input = Reline.readline("(debug) ")
case input
when "continue"
break
when "exit"
exit
else
puts "=> " + eval_input(binding, input).inspect
end
end
end

private

def eval_input(binding, input)
binding.eval(input)
rescue Exception => e
puts "Evaluation error: #{e.inspect}"
end

def display_code(binding)

file, current_line = binding.source_location

if File.exist?(file)
lines = File.readlines(file)
end_line = [current_line + 5, lines.count].min - 1
start_line = [end_line - 9, 0].max
puts "[#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"

else
puts " #{lineno_str}| #{line}"

end

end
end
end
end

SESSION = Session.new
54 end
55
56 class Binding
57 def debug
58 Debugger: : SESSION. suspend! (self)
59 end
60 end

) @
frozen_string_literal: true

require "reline"

module Debugger
class Session
def suspend!(binding)
display_code(binding)

WO NOUDE WNR O

while input = Reline.readline("(debug) ")
case input
when "continue"
break
when "exit"
exit
else
puts "=> " + eval_input(binding, input).inspect
end
end
end

private

def eval_input(binding, input)
binding.eval(input)
rescue Exception => e
puts "Evaluation error: #{e.inspect}"
end

def display_code(binding)

file, current_line = binding.source_location

if File.exist?(file)
lines = File.readlines(file)
end_line = [current_line + 5, lines.count].min - 1
start_line = [end_line - 9, 0].max
puts "[#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"

else
puts " #{lineno_str}| #{line}"

end

end
end
end
end

SESSION = Session.new
54 end
55
56 class Binding
57 def debug
58 Debugger: : SESSION. suspend! (self)
59 end
60 end

eove
1 # frozen_string_literal: true
2

require "reline"

3

4

5 module Debugger
6 class Session
7
8
9

def suspend!(binding) ‘ . .

display_code(binding)

whi;z:r;z:ﬁ: Reline.readline(" (debug) ") 5 3 S ES S I ON — Se S S io n . n ew

when "continue"
break
when "exit" 5 4 d
exit e n
else
puts "=> " + eval_input(binding, input).inspect 5 5
end
end
end

56 class Binding

private

def eval_input(binding, input) 5 7 d f d b
binding.eval(input) e e u g

rescue Exception => e

58 Debugger: :SESSION. suspend! (self)

def display_code(binding)

file, current_line = binding.source_location 5 9 e n d

if File.exist?(file)

lines = File.readlines(file) 60 d
end_line = [current_line + 5, lines.count].min - 1 en

start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"

else
puts " #{lineno_str}| #{line}"

end

end
end
end

$ 53 SESSION = Session.new

® 54 end

£ 55

& 56 class Binding

I 57 def debug :
g 58 Debugger: : SESSION. suspend! (self) 3
| end 4

eove
1 # frozen_string_literal: true
2

require "reline"

3

4

5 module Debugger
6 class Session
7
8
9

def suspend!(binding) ‘ . .

display_code(binding)

when "continue"
break
when "exit" 5 4 d
exit e n
else
puts "=> " + eval_input(binding, input).inspect 5 5
end
end
end

56 class Binding

private

def eval_input(binding, input) 5 7 d f d b
binding.eval(input) e e u g

rescue Exception => e

58 Debugger: :SESSION. suspend! (self)

def display_code(binding)
file, current_line = binding.source_location 5 9 e n d
if File.exist?(file)

lines = File.readlines(file) 60 d
end_line = [current_line + 5, lines.count].min - 1 en

start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"

else
puts " #{lineno_str}| #{line}"

end

end
end
end

$ 53 SESSION = Session.new

® 54 end

£ 55

& 56 class Binding

I 57 def debug :
g 58 Debugger: : SESSION. suspend! (self) 3
| end 4

eove
1 # frozen_string_literal: true
2

require "reline"

3

4

5 module Debugger
6 class Session
7
8
9

def suspend!(binding) ‘ ‘ .

display_code(binding)

wh(i:;.zeizs:z: Reline.readline(" (debug) ") 5 3 S ES S I ON — Se S S io n . n ew

when "continue"
break

when "exit" 5 4 d
exit e n

else
puts "=> " + eval_input(binding, input).inspect

end

end
end

private

def eval_input(binding, input)] d f d b
binding.eval(input) i e e u g

rescue Exception => e

Debugger: :SESSION.suspend! (self)

def display_code(binding)
file, current_line = binding.source_location

if File.exist?(file)
lines = File.readlines(file)
end_line = [current_line + 5, lines.count].min - 1
start_line = [end_line - 9, 0].max
puts "[#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"

else
puts " #{lineno_str}| #{line}"

end

end
end
end

$ 53 SESSION = Session.new

® 54 end

¥ 55

& 56 class Binding

l 57 def debug

g 58 Debugger: :SESSION. suspend! (self) 3
| end 4

eove
1 # frozen_string_literal: true
2

require "reline"

3

4

5 module Debugger
6 class Session
7
8
9

def suspend!(binding) ‘ . .

display_code(binding)

whi;zeizz::c; Reline.readline(" (debug) ") 5 3 S ES S I ON — Se S S io n . n ew

when "continue"
break
when "exit" 5 4 d
exit e n
else
puts "=> " + eval_input(binding, input).inspect 5 5
end
end
end

56 class Binding

private

def eval_input(binding, input) 5 7 d f d b
binding.eval(input) e e u g

rescue Exception => e

58 Debugger: :SESSION. suspend! (_self)

def display_code(binding)
file, current_line = binding.source_location 5 9 e n d
if File.exist?(file)

lines = File.readlines(file) 60 d
end_line = [current_line + 5, lines.count].min - 1 en

start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"

else
puts " #{lineno_str}| #{line}"

end

end
end
end

$ 53 SESSION = Session.new

® 54 end

£ 55

& 56 class Binding

I 57 def debug :
g 58 Debugger: : SESSION. suspend! (self) 3
| end 4

eove
1 # frozen_string_literal: true
2

require "reline"

3

4

5 module Debugger
6 class Session
7
8
9

def suspend!(binding) ‘ . .

display_code(binding)

whi;zeizz::c; Reline.readline(" (debug) ") 5 3 S ES S I ON — Se S S io n . n ew

when "continue"
break
when "exit" 5 4 d
exit e n
else
puts "=> " + eval_input(binding, input).inspect 5 5
end
end
end

56 class Binding

private

def eval_input(binding, input) 5 7 d f d b
binding.eval(input) e e u g

rescue Exception => e

puts "Evaluation error: #{e.inspect}" 5 8 D
end

ebugger::SESSION. suspend! (self)

def display_code(binding)
file, current_line = binding.source_location 5 9 e n d
if File.exist?(file)

lines = File.readlines(file) 60 d
end_line = [current_line + 5, lines.count].min - 1 en

start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"

else
puts " #{lineno_str}| #{line}"

end

end
end
end

$ 53 SESSION = Session.new

® 54 end

£ 55

& 56 class Binding

I 57 def debug :
g 58 Debugger: : SESSION. suspend! (self) 3
| end 4

o0
frozen_string_literal: true

require "reline"

Jodite Debugger] 5 module Debugger
§ class Session ’)
i def.suspend!(binc'iinc_?) C'l_ass Sess:l_on
display_code(binding)
def suspend!(binding)
display_code(binding)

6
while input = Reline.readline(" (debug) ") 77
case input 3
when "continue" y E;
break
when "exit" S;
exit

el;S):ts "=> " + eval_input(binding, input).inspect | Whl.l'e lnPUt = Re-Llne' readllHE(" (debug) !)
h k 11 case input
end | .
12 when "continue"
B | 13 break
def eval_input(binding, input) 3
binding.eval(input) ‘ 14 when Ilexitll

rescue Exception => e
ex1lt

private

‘ puts "Evaluation error: #{e.inspect}" g
:», “eng' ’) 15

def display_code(binding) 16 EISE

file, current_line = binding.source_location

"n_ "
e it (it 17 puts "=> " + eval_input(binding, input).inspect
start_line = [end_line - 9, 0].max
19
lines[start_line..end_line].each_with_index do |line, index| 20 end

lines = File.readlines(file)
end_line = [current_line + 5, lines.count].min - 1 18 end
puts "[#{start_line + 1}, #{end_line + 1}] in #{file}" end
max_lineno_width = (end_line + 1).to_s.size

lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width) 2 1

if lineno == current_Lline 22
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}" 23
end

end 24 def eval_input(binding, input)

49 end

o ena 25 binding.eval(input)

end

:; SESSION = Session.new 26 rescue EXCEptiOn => e

54 end

ss 27 puts "Evaluation error: #{e.inspect}"

56 class Binding

57 def debug

58 Debugger: : SESSION. suspend! (self) 28 end
59 end

60 end

private

frozen_string_literal: true

require "reline"

fnodule Debugger
§ class Session

def suspend!(binding)
display_code(binding)

while input = Reline.readline(" (debug) ")
case input
when "continue"
break
when "exit"
exit
else
puts "=> " + eval_input(binding, input).inspect
end
end
end

private

def eval_input(binding, input)
binding.eval(input)

rescue Exception => e
puts "Evaluation error: #{e.inspect}"

ai _end

49
50
51
52
53
54
55
56
57
58
59
60

def display_code(binding)
file, current_line = binding.source_location

if File.exist?(file)
lines = File.readlines(file)
end_line = [current_line + 5, lines.count].min - 1
start_line = [end_line - 9, 0].max
puts "[#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"

else
puts " #{lineno_str}| #{line}"

end

end
end
end
end

SESSION = Session.new
end

class Binding
def debug
Debugger: : SESSION. suspend! (self)
end
end

5 module Debugger

class Se551on

‘dispiayﬁCOdé(blndlng)

while input
case input
when "continue"
break
when "exit"
exit
else

puts "=> " + eval_input(binding, input).inspect

end
end
end

private
def eval_input(binding, input)

binding.eval(input)
rescue Exception => e

puts "Evaluation error: #{e.inspect}"

end

= Reline.readline(" (debug)

11)

eove
1 # frozen_string_literal: true

’ 00

3 require "reline"

4 R A SR =t T 5 CARRS - o DO _
Fodute bebugger R 5 module Debugger
p class Session

def suspend!(binding) C-l.ass SESSiOn

display_code(binding)

while input = Reline.readline("(debug) ") ’ def Suspend ! (binding)

e e tinue i display_code(binding)
wh:;eﬁ:xit"
exit

wu

else '] T A it I I I N 1 \
1puts "=> " + eval_input(binding, input).inspect ‘ Whl.l'e lnPUt - RE1lne " readllHE((debug))
end

end ! i case input
end 1 i .
when "continue"

, break
def eval_input(binding, input) 3 1
binding.eval(input) ‘ i n]
rescue Exception => e ' When eXlt
puts "Evaluation error: #{e.inspect}"

def display_code(binding) £ else
file, current_line = binding.source_location A

private

if File.exist?(file)
34 lines = File.readlines(file) k end
35 end_line = [current_line + 5, lines.count].min - 1 b
36 start_line = [end_line - 9, 0].max
37 puts "[#{start_line + 1}, #{end_line + 1}] in #{file}"
38 max_lineno_width = (end_line + 1).to_s.size
39 lines[start_line..end_line].each_with_index do |line, index|
40 lineno = start_line + index + 1
41 lineno_str = lineno.to_s.rjust(max_lineno_width)
42
43 if lineno == current_Lline .
44 puts " => #{lineno_str}| #{line}" p rlvate
45 else
46 puts " #{lineno_str}| #{line}"
47 end
oo e def eval_input(binding, input)
oo e binding.eval(input)
52

53 SESSION = Session.new rescue EXCEptiOn => e

54 end

- puts "Evaluation error: #{e.inspect}"

56 class Binding

57 def debug en d
58 Debugger: : SESSION. suspend! (self)

59 end

60 end

puts "=> " + eval_input(binding, input).inspect

o0
frozen_string_literal: true

require "reline"

Jodite Debugger] 5 module Debugger
§ class Session ’)
i def.suspend!(binc'iinc_?) C'l_ass Sess:l_on
display_code(binding)
def suspend!(binding)
display_code(binding)

6
while input = Reline.readline(" (debug) ") 77
case input 3
when "continue" y E;
break
when "exit" S;
exit

el;S):ts "=> " + eval_input(binding, input).inspect | Wh ‘ nPUt ‘- 61lne n readllHE(' (dEbUg) ")
o k 11 fcase 1 T
end 3 : . ,
12 twhen "continue"
S | 13 ¢ break
def eval_input(binding, input) 3
binding.eval(input) ‘ 14 when] EXit 1

rescue Exception => e 3
j _exit

private

‘ puts "Evaluation error: #{e.inspect}" g
:», “eng' ’) 15

def display_code(binding) 16 EISE

file, current_line = binding.source_location

"n_ "
e it (it 17 puts "=> " + eval_input(binding, input).inspect
start_line = [end_line - 9, 0].max
19
lines[start_line..end_line].each_with_index do |line, index| 20 end

lines = File.readlines(file)
end_line = [current_line + 5, lines.count].min - 1 18 end
puts "[#{start_line + 1}, #{end_line + 1}] in #{file}" end
max_lineno_width = (end_line + 1).to_s.size

lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width) 2 1

if lineno == current_Lline 22
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}" 23
end

end 24 def eval_input(binding, input)

49 end

o ena 25 binding.eval(input)

end

:; SESSION = Session.new 26 rescue EXCEptiOn => e

54 end

ss 27 puts "Evaluation error: #{e.inspect}"

56 class Binding

57 def debug

58 Debugger: : SESSION. suspend! (self) 28 end
59 end

60 end

private

)
frozen_string_literal: true

U oo e
require "reline
BoauTe DEDaEr 5 module Debugger
§ class Session ’ i
def.suspend!(binc.iint_.;) 6 C'l_ass SeSS]_on
display_code(binding)
while input = Reline.readline("(debug) ") 7 def Suspend ! (blndlng)
when "continue" : 8 display_code(binding)
break ;
] 9

when "exit"
exit

elzzts "=> " 4+ eval_input(binding, input).inspect Whl.l'e lnPUt = RE1lne " readllHE(! (debug) :)
h k 11 case input
end] .
12 when "continue"
S | 13 break
def eval_input(binding, input) 3
binding.eval(input) ‘ 14 when] EXit 1

rescue Exception => e
ex1lt

private

‘ puts "Evaluation error: #{e.inspect}" g
:», “eng' ’) 15

def display_code(binding) 16 else

file, current_line = binding.source_location
l I — I I L] L - - L
e it (it 17 puts "=> " + eval_input(binding, input).inspect
34 lines = File.readlines(file) 1 8 en d

35 end_line = [current_line + 5, lines.count].min - 1

36 start_line = [end_line - 9, 0].max

37 puts "[#{start_line + 1}, #{end_line + 1}] in #{file}" 19 end
38 max_lineno_width = (end_line + 1).to_s.size

39 lines[start_line..end_line].each_with_index do |line, index| 20 end

40 lineno = start_line + index + 1

41 lineno_str = lineno.to_s.rjust(max_lineno_width) 2 1

42

43 if lineno == current_Lline .

44 puts " => #{lineno_str}| #{line}" p rlvate
45 else

46 puts " #{lineno_str}| #{line}" 23

47 end

2 24 [def eval input(binding, input)

49 end

i 25 - binding.eval(input)

end

:g SESSION = Session.new 26 rescue EXCEptiOn => e

54 end

55 27 i puts "Evaluation error: #{e.inspect}"

56 class Binding

57 def debug

58 Debugger: : SESSION. suspend! (self) 28 e e
59 end

60 end

)
frozen_string_literal: true

require "reline"

module Debugger
class Session
def suspend!(binding)
display_code(binding)

oONOOU DA WNR O

while input = Reline.readline(" (debug) ")
case input
when "continue"
break
when "exit"
exit
else
puts "=> " + eval_input(binding, input).inspect
end
end
end

private

def eval_input(binding, input)
binding.eval(input)
rescue Exception => e
puts "Evaluation error: #{e.inspect}"
end

def display code(binding)

file, current_line = binding.source_location

if File.exist?(file)
lines = File.readlines(file)
end_line = [current_line + 5, lines.count].min - 1
start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size

lines[start_line..end_line].each_with_index do |line, index|Z

lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}"
end
end
end

SESSION = Session.new

55

56 class Binding

57 def debug

58 Debugger: : SESSION. suspend! (self)
59 end

60 end

XK
30 def

display_code(binding)

31 file, current_line = binding.source_location

32

33 if File.exist?(file)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

lines = File.readlines(file)
end_1line = [current_line + 5, lines.count].min - 1
start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_line
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}"
end
end

49 end

50 end

in app.rb
def fib(num)
if num < 2
num
else
binding.debug
fib(num-1) + fib(num-2) t
end ’
end

frozen_string_literal: true
30 def display_code(binding)
31 file, current_line = binding.source_location

require "reline"

module Debugger
class Session 32

def suspend!(binding)
display_code(binding) 33 if File. ex1st?(f11e)
o , | 34 lines = File.readlines(file)
while input = Reline.readline("(debug) ") . i .)
case input 35 end_line = [current_line + 5, lines.count].min - 1

when "continue"

o e 36 start_line = [end_line - 9, 0].max |
“fL?““" 37 puts "[#{start_line + 1}, #{end_line + 1}] in #{file}"
else 38 max_lineno_width = (end_line + 1).to s.size

puts "=> " + eval_input(binding, input).inspect

end 39 lines[start_line..end_line].each_with_index do |line, index|
o 40 lineno = start_line + index + 1
41 lineno_str = lineno.to_s.rjust(max_lineno_width)
42 :
def eval_input(binding, input) 43 if lineno == current_line |

binding.eval(input)

oONOOU DA WNR O

private

12| a = fib(6)

rescue Exception => e 44 putS "= #{lineno_st r}| #{line}"
puts "Evaluation error: #{e.inspect}"

end 45 else

Zoda 2. o T — s B e 1) . . n
def display_code(binding) , 46 pUtS #{llneno_St r} I #{11“6}
file, current_line = binding.source_location] 47 end

if File.exist?(file) ’ 48 end

lines = File.readlines(file) 4
end_line = [current_line + 5, lines.count].min - 1 49 end
start_line = [end_line - 9, 0].max ' 50 end
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_linel.each_with_index do |line, index| %

lineno = start_line + index + 1

lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}"
end
end
end

SESSION = Session.new

55

56 class Binding

57 def debug

58 Debugger: : SESSION. suspend! (self)
59 end

60 end

o
frozen_string_literal: true

require "reline"

module Debugger
class Session
def suspend!(binding)
display_code(binding)

oONOOU DA WNR O

while input = Reline.readline(" (debug) ")
case input
when "continue"
break
when "exit"
exit
else
puts "=> " + eval_input(binding, input).inspect
end
end
end

private

def eval_input(binding, input)
binding.eval(input)
rescue Exception => e
puts "Evaluation error: #{e.inspect}"
end

def display_code(binding)
file, current_line = binding.source_location

if File.exist?(file)
lines = File.readlines(file)
end_line = [current_line + 5, lines.count].min - 1
start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size

lines[start_line..end_linel.each_with_index do |line, index| %

lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}"
end
end
end

SESSION = Session.new

55

56 class Binding

57 def debug

58 Debugger: : SESSION. suspend! (self)
59 end

60 end

32

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 en

if File.exist?(file)
lines = File.readlines(file)
end_1line = [current_line + 5, lines.count].min - 1
start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_line].each_with_index do |line, index|
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_line
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}"
end
end
end
d

in app.rb
def fib(num)
if num < 2
num
else
binding.debug
fib(num-1) + fib(num-2)
end
end

12| a = £ib(6)

frozen_string_literal: true

require "reline" 30 def display_code(binding)] et , e
e 31 fi i indi i ;f def flb(num)

file, current_line = binding.source_location
module Debugger

class Session 32 ' 1f num < 2

ey ot (binding) 33 if File.exist?(file)
while input = Reline.readline("(debug) ") 34 lines = File. readlines(file) 3 num
case dnput 35 end_line = [current_line + 5, lines.count].min -1 : else
break 36 start_line = [end line - 9, @].max _) i | . .
T 37 fputs " [{’art le'+ 1}, ’#{e:'llne + 1}] 1n #{flle}" : binding.debug
el:zts "=> " + eval_input(binding, input).inspect 38 max lneno Wl - ; 1).to_) ' fib (num- 1) + fib (num - 2)
end 39 lines[start_line..end_line] .each_w1th_1ndex do |line, index| 3 end
o 40 lineno = start_line + index + 1 !
. 41 lineno_str = lineno.to_s.rjust(max_lineno_width) ; 10 end
private | B | 42 11
def eval_input(binding, input) 43 if lineno == current_line f

oONOOU DA WNR O

binding.eval(input)

rescue Exception => e 44 puts "= #{lineno_str}l #{.l_ine}" 12 a = fib(é)

puts "Evaluation error: #{e.inspect}"

[1] 3 3 1]
def display_code(binding) , 46 pUtS #{llneno_St r} I #{11“6}
file, current_line = binding.source_location] 47 end

if File.exist?(file) ’ 48 end

lines = File.readlines(file) 4
end_line = [current_line + 5, lines.count].min - 1 49 end
start_line = [end_line - 9, 0].max ' 50 end
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_linel.each_with_index do |line, index| %

lineno = start_line + index + 1

lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}"
end
end
end

SESSION = Session.new

55

56 class Binding

57 def debug

58 Debugger: : SESSION. suspend! (self)
59 end

60 end

frozen_string_literal: true ® ® - § - in J [

oONOOU DA WNR O

private

i 30 def display_code(binding) N T N
require "reline — ' ¥
nodute Debugger 31 file, current_line = binding.source_location ; def flb num)
class Session o 32 ' if num < 2
" dieptay.cote(binding) 33 if File.exist?(file) | |
- - - - - num
while input = Reline.readline("(debug) ") 34 lines = Flle-readllneS(flle) 4
case input 35 end_line = [current_line + 5, lines.count].min - 1 ¢ else
when "continue" 3
36 start_line = [end_line - 9, 0].max . .
break — — ’
Wh::i:em" 37 puts "[#{start_line + 1}, #{end_line + 1}] in #{file}" (| blndlng’debug i
else (| 38 max_lineno_width = (end_line + 1).to_s.size k1 flb(num-l) + f1b(num-2) it
uts "=> " + eval_input(binding, input).inspect T A A A A AP S AR AR P S I mpeo ;
d S e HPERTAEPEE 39 ‘lines [start_line..end_line].each_with_index do |line, index]|{ 3 end i
o 40§ lineno = start_line + index + 1 R
41 § lineno_str = lineno.to_s.rjust(max_lineno_width) | 11 end
42 ‘ 3
de;;;;:;;:sg{ﬁ‘;;gj;:g fnput) 43 { if lineno == current_line
rescue Exception = e 44 i puts " => #{lineno_str}| #{line}"
puts "Evaluation error: #{e.inspect}" ,
end 45 t else
“def display. code(binding) T e 46 - puts " #{lineno_str}| #{line}"
file, current_line = binding.source_location] 47 ; end

if File.exist?(file) ' 48 tend
lines = File.readlines(file) 3 ——
end_line = [current_line + 5, lines.count].min - 1 i ZlS)
start_line = [end_line - 9, 0].max
puts " [#{start_line + 1}, #{end_line + 1}] in #{file}"
max_lineno_width = (end_line + 1).to_s.size
lines[start_line..end_linel.each_with_index do |line, index| %
lineno = start_line + index + 1
lineno_str = lineno.to_s.rjust(max_lineno_width)

if lineno == current_Lline
puts " => #{lineno_str}| #{line}"
else
puts " #{lineno_str}| #{line}"
end
end
end

SESSION = Session.new

55

56 class Binding

57 def debug

58 Debugger: : SESSION. suspend! (self)
59 end

60 end

2. Step-In

® Once received , the debugger steps to the next program execution

® Allows us to move deeper into the program

1 require "debugger"

def fib(num)
1T num < 2
num

else
fib(num-1) + fib(num-2)

11 binding.debug
12a = fib(6)
13b = fib(7)
14 puts a + b

< ~ > _ Ja = - > V% i » 2 .o S - - » gy S _ £ S . o - l . N 7 - - N - N . 3 ~ _ - e = AN ~ N 0~ e o ~ = - < = R

< ~ > _ Ja = - > V% i » 2 .o S - - » gy S _ £ S . o - l . N 7 - - N - N . 3 ~ _ - e = AN ~ N 0~ e o ~ = - < = R

11while input = Reline.readline(" (debug) ")
12
13
14
15
16

17
18
19
20
21
22

case 1input

when "step"
step_in
break

when "continue"
break

when "exit"
exit

else
puts "=> " + eval_input(binding, input).inspect

end

23 end

11while input = Reline.readline(" (debug) ")
12
13
14
15
16

17
18
19
20
21
22

case 1input

when "step"

 step_in
break

when "continue"
break

when "exit"
exit

else
puts "=> " + eval_input(binding, input).inspect

end

23 end

11while input = Reline.readline(" (debug) ")
12
13
14
15
16

17
18
19
20
21
22

case 1input

when "step"
step_in
break

when "continue"
break

when "exit"
exit

else
puts "=> " + eval_input(binding, input).inspect

end

23 end

28 def step_in

29 TracePoint.trace(:1line) do |tp]|

30 # There are some internal files we don't want to step into
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution
34 tp.disable

35 suspend! (tp.binding)

36 end

37 end

11while input = Reline.readline(" (debug) ")
12
13
14
15
16

17
18
19
20
21
22

case 1input

when "step"
step_in
break

when "continue"
break

when "exit"
exit

else
puts "=> " + eval_input(binding, input).inspect

end

23 end

28 def step_in

29 TracePoint.trace(:1line) do |tp]|

30 # There are some internal files we don't want to step into
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution
34 tp.disable

35 suspend! (tp.binding)

36 end

37 end

(XN

28 def step_in

29 TracePoint.trace(:1line) do |tp]|

30 # There are some internal files we don't want to step into
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution
34 tp.disable

35 suspend! (tp.binding)

36 end

37 end

N
1 require "debugger"

def fib(num)
1T num < 2

(N)

28 def step_in num

29 TracePoint.trace(:1line) do |tp]|

30 # There are some internal files we don't want to step into e-Lse

31 next if internal_path?(File.expand_path(tp.path)) _)
32 fib(num-1) + fib(num-2)
33 # Disable the TracePoint after we hit the next execution

34 tp.disable

35 suspend! (tp.binding)

36 end

37 end

11 binding.debug
12a = Tib(6)
13b = fib(7)

14 puts a + b

N
1 require "debugger”

def fib(num)
if num < 2

28 def step_in n Um
29 TracePoint.trace(:1line) do |tp]|

30 # There are some internal files we don't want to step into e-Lse
31 next if internal_path?(File.expand_path(tp.path))

32 fib(num-1) + fib(num-2)

33 # Disable the TracePoint after we hit the next execution
34 tp.disable

35 suspend! (tp.binding)

36 end

37 end

11 binding.debug
12a = fib(6)
13b = fib(7)
14 puts a + b

N
1 require "debugger”

def fib(num)
if num < 2

28 def step_in n Um
29 TracePoint.trace(:line) do |[tp|

30 " There are some internal Files we don't want to step into else
31 next if internal_path?(File.expand_path(tp.path))

32 fib(num-1) + fib(num-2)

33 # Disable the TracePoint after we hit the next execution
34 tp.disable

35 suspend! (tp.binding)

36 end

37 end

11 binding.debug
12a = fib(6)
13b = fib(7)
14 puts a + b

X Debugger execution

(XN
28 def step_in

29 TracePoint.trace(:1line) do |tp]| . .

30 # There are some internal files we don't want to step into x Standard/defaUIt ||bra ries
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution

34 tp.disable .

35 suspend! (tp.binding) x RUby Internal

36 end

37 end

Their program’s next execution

28 def step_in
29 TracePoint.trace(:1line) do |tp]| XK

30 # There are some internal files we don't want to step into 41# 1. Check if the path is inside the debugger itself
31 next internal_path?(File.expand_path(tp.path))

42 # 2. Check if the path is inside Ruby's standard library
43 # 3. Check if the path is inside Ruby's internal files
32 44 # 4. Check if the path is inside Reline

33 # Disable the TracePoint after we hit the next execution 45 def internal_path?(path)
34 tp.disable 46 path.start_with?(__dir__) || path.start_with?(RbConfig::CONFIG["rubylibdir"]) ||

47 path.match?(/<internal:/) || path.start_with?(RELINE_PATH)
35 suspend! (tp.binding) 48 end

36 end
37 end

28 def step_1n

29 TracePoint.trace(:line) do |tp]
30 # There are some internal files we don't want to step into
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution
34 tp.disable

35 suspend! (tp.binding)

36 end

37 end

28 def step_1n

29 TracePoint.trace(:line) do |tp]
30 # There are some internal files we don't want to step into
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution
34 .disable

35 suspend! (tp.binding)

36 end

37 end

28 def step_1n

29 TracePoint.trace(:line) do |tp]

30 # There are some internal files we don't want to step into
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution
34

35 suspend!(tp.binding)

36 end

37 end

3. Step-over

® Once received , the debugger steps to the next line

e Skip detail executions

1 require "debugger"

def fib(num)
if num < 2
num

else
fib(num-1) + fib(num-2)

11 binding.debug
12a = fib(6)
13b = fib(7)
14 puts a + b

XN
1 require "debugger"

def fib(num)
if num < 2
num

else
fib(num-1) + fib(num-2)

11 binding.debug

13b = fib(7)
14 puts a + b

XN
1 require "debugger"

def fib(num)
if num < 2
num

else
fib(num-1) + fib(num-2)

11 binding.debug

13b = fib(7)
14 puts a + b

1 "‘
ol
h

13 2
b
, [

' ,
&

"

% A
3 i
] .

A

] k.
. :"
13
2 o
. '
. |
b ,
)
)
-‘ ‘N
/) A ¢

.
a
) P
L, N
) N
q

.
i
D 3
& P
N
9 i
B,
' & |
)
A

1 "‘
ol
h

13 2
b
, [

' ,
&

"

% A
3 i
] .

A

] k.
. :"
13
2 o
. '
. |
b ,
)
)
-‘ ‘N
/) A ¢

.
a
) P
L, N
) N
q

.
i
D 3
& P
N
9 i
B,
' & |
)
A

11while input = Reline.readline(" (debug) ")
12 case 1input

13 when "step"

14 step_in

15 break

16 when "next"

17 step_over

18 break

19 when "continue"

20 break

21 when "exit"

22 exit

23 else

24 puts "=> " + eval_input(binding, input).inspect
25 end

26 end

11while input = Reline.readline("(debug) ")

12
13
14
15
16
17
18
19
20
21
22
23
24
25

case 1input

when "step"
step_in
break

when "next"

 step_over
break

when "continue"
break

when "exit"
exit

else
puts "=> " + eval_input(binding, input).inspect

end

26 end

11while input = Reline.readline("(debug) ")

12
13
14
15
16
17
18
19
20
21
22
23
24
25

case 1input

when "step"
step_in
break

when "next"
step_over

break

when "continue"
break

when "exit"
exit

else
puts "=> " + eval_input(binding, input).inspect

end

26 end

42 def step_over

43 # ignore call frames from the debugger itself

44 current_depth = caller.length = 2

45

46 TracePoint.trace(:line) do |tp]|

47 # There are some internal files we don't want to step into
48 next if internal_path?(File.expand_path(tp.path))
49 depth = caller. length

50

51 next if current_depth < depth

52

53 tp.disable

54 suspend! (tp.binding)

55 end

56 end

11while input = Reline.readline("(debug) ")

12
13
14
15
16
17
18
19
20
21
22
23
24
25

case 1input

when "step"
step_in
break

when "next"
step_over
break

when "continue"
break

when "exit"
exit

else
puts "=> " + eval_input(binding, input).inspect

end

26 end

42 def step_over

43 # ignore call frames from the debugger itself

44 current_depth = caller.length = 2

45

46 TracePoint.trace(:line) do |tp]|

47 # There are some internal files we don't want to step into
48 next if internal_path?(File.expand_path(tp.path))
49 depth = caller. length

50

51 next if current_depth < depth

52

53 tp.disable

54 suspend! (tp.binding)

55 end

56 end

4
. ‘: : .

42 def step_over
PRPPS 43 # ignore call frames from the debugger itself

44 current_depth = caller.length = 2

45

46 TracePoint.trace(:line) do |tp]|

47 # There are some internal files we don't want to step into
48 next if internal_path?(File.expand_path(tp.path))

49 depth = caller. length

50

51 next if current_depth < depth

28 def step_in

29 TracePoint.trace(:1line) do |tp|

30 # There are some internal files we don't want to step into
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution
34 tp.disable

35 suspend! (tp.binding) 55

36 end 53 tp.disable

37 end 54 suspend! (tp.binding)
55 end
56 end

4
. ‘: : .

42 def step_over
PRPPS 43 # ignore call frames from the debugger itself

44 current_depth = caller.length - 2

e

46 TracePoint.trace(:line) do |tp]|

47 # There are some internal files we don't want to step into
48 next if internal_path?(File.expand_path(tp.path))

49 depth = caller. length

50

51 next if current_depth < depth

28 def step_in

29 TracePoint.trace(:1line) do |tp|

30 # There are some internal files we don't want to step into
31 next if internal_path?(File.expand_path(tp.path))

32

33 # Disable the TracePoint after we hit the next execution
34 tp.disable

35 suspend! (tp.binding) 55

36 end 53 tp.disable

37 end 54 suspend! (tp.binding)
55 end
56 end

42 def step_over eoe
43 # ignore call frames from the debugger itself 42 def step_over

44 current_depth = caller.length - 2 43 # ignore call frames from the debugger itself

45 44 current_depth = caller.length - 2

46 puts "Current depth: #{current_depth}" 45

47 TracePoint.trace(:1line) do |tp]| 46 TracePoint.trace(:line) do |tp]|

48 # There are some internal files we don't want to step into 47 # There are some internal files we don't want to step into
49 next if internal_path?(File.expand_path(tp.path)) 48 next if internal_path?(File.expand_path(tp.path))

50 depth = caller.length 49 depth = caller.length

51 50
52 line = File.readlines(tp.path) [tp.lineno - 1] 51 next if current_depth < depth

53 puts "Line #{tp.lineno} (depth: #{depth}): #{line}" 52

54 next if current_depth < depth 53 tp.disable

55 54 suspend! (tp.binding)
56 tp.disable 55 end

57 suspend! (tp.binding) 56 end

58 end

59 end

C N
42 def step_over N
43 # ignore call frames from the debugger itself 42 def step_over

44 current_depth = caller.length - 2 43 # ignore call frames from the debugger itself

45 44 current_depth = caller.length - 2

46 puts "Current depth: #{current_depth}" 45

47 TracePoint.trace(:line) do Itpl 46 TracePoint.trace(:line) do |tp]|

48 # There are some internal files we don't want to step into 47 # There are some internal files we don't want to step into
49 next if internal_path?(File.expand_path(tp.path)) 48 next if internal_path?(File.expand_path(tp.path))

50 depth = caller.length 49 depth = caller.length

51 50
52 line = File.readlines(tp.path) [tp.lineno - 1] 51 next if current_depth < depth

53 puts "Line #{tp.lineno} (depth: #{depth}) #{line}" 52

54 next if current_depth < depth T 53 tp.disable

55 54 suspend! (tp.binding)
56 tp.disable 55 end

57 suspend! (tp.binding) 56 end

58 end

59 end

42 def step_over

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

ignore call frames from the debugger itself

current_depth

puts "Current depth: v#{currgnt_depth}"

caller. length

2

TracePoint.trace(:line) do |tp|

There are some internal files we don't want to step into

next if internal_path?(File.expand_path(tp.path))
depth = caller.length

line = File.readlines(tp.path) [tp.lineno - 1]

puts "Line #{tp.lineno} (depth: #{depth})
next if current_depth < depth -

tp.disable

suspend! (tp.binding)

end

59 end

#{1in¢}"

OCOoOONOULES WN =

=>

(deb
Curr
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
Line
[5,

=>

5| num

6| else

7| fib(num-1) + fib(num-2)
8| end

9| end

10 |

11| binding.debug

12| a = fib(6)

13| b = fib(7)

14| puts a + b

ug) next

ent depth: 1

(depth: 2): if num < 2
(depth: 2): fib(num-1)
(depth: 3): if num < 2
(depth: 3): fib(num-1)
(depth: 4): if num < 2
(depth: 4): fib(num-1)
(depth: 5): if num < 2
(depth: 5): fib(num-1)
(depth: 6): if num < 2
(depth: 6): fib(num-1)
(depth: 7): if num < 2
(depth: 7): num
(depth: 7): if num < 2
(depth: 7): num
(depth: : if num < 2
(depth: 6): num
(depth: 5): if num < 2
(depth: 5): fib(num-1)
(depth: 6): if num < 2
(depth: 6): num
(depth: i if num < 2
(depth: : num
(depth: : if num < 2
(depth: 4): fib(num-1)
(depth: : if num < 2
(depth: : fib(num-1)
(depth: : if num < 2
(depth: : num
(depth: : if num < 2
(depth: 6): num
(depth: : if num < 2
(depth: 5): num
(depth: : if num < 2
(depth: 3): fib(num-1)
(depth: 4): if num < 2
(depth: 4): fib(num-1)
(depth: 5): if num < 2
(depth: - fib(num-1)
(depth: : if num < 2
(depth: : num
(depth: : if num < 2
(depth: 6): num
(depth: : if num < 2
(depth: : num
(depth: : if num < 2
(depth: : fib(num-1)
(depth: : if num < 2
(depth: 5): num
(depth: 5): if num < 2
(depth: : num

13 (depth: 1) b = fib(7)
14] in app.rb

5| num

6| else

7] fib(num-1) + fib(num-2)
8| end

9] end

10|

11| binding.debug

12| a = fib(6)

13| b = fib(7)

14| puts a + b

UVRARUBABNPURARUPAPUBSBNDISNPAEANPURAMUPRARUBRBNBDANPURNMUASANPURARURMUBRBNBAENBASNPAEANBRNS

fib(num-2)
fib(num-2)
fib(num-2)
fib(num-2)

fib(num-2)

fib(num-2)

fib(num-2)

fib(num-2)

fib(num-2)
fib(num-2)
fib(num=2)

fib(num-2)

N
42 def

step_over

43 # ignore call frames from the debugger itself

44 current_depth =

45

caller.length - 2

46 puts "Current depth: #{current_depth}"
47 TracePoint.trace(:line) do |tp|

48
49
50
51
52
53
54
55
56
57

There are some internal files we don't want to step into
next if internal_path?(File.expand_path(tp.path))
depth = caller.length

line = File.readlines(tp.path) [tp.lineno - 1]

puts "Line #{tp. llneno}»(depth. #{depth}) #{1ine}"
next if current_depth < depth T

tp.disable
suspend! (tp.binding)

58 end

59 end

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

(debug) next

10|

Current depth: 1

TR e
L1ne 7 (depth: 2) fib(num-1) +
L1ne 4 (depth: 3): if num < 2
'Line 7 (depth: 3): fib(num-1) +
fLine 4 (depth: 4): if num < 2
tLine 7 (depth: 4): fib(num-1) +
iLine 4 (depth: 5): if num < 2
{Line 7 (depth: 5): fib(num-1) +
tLine 4 (depth: 6): if num < 2
tLine 7 (depth: 6): fib(num-1) +
Line 4 (depth: 7): if num < 2
iLine 5 (depth: 7): num
iLine 4 (depth: 7): if num < 2
fiLine 5 (depth: 7): num
Line 4 (depth: 6): if num < 2
Line 5 (depth: 6): num
iLine 4 (depth: 5): if num < 2
iLine 7 (depth: 5): fib(num-1) +
iLine 4 (depth: 6): if num < 2
tLine 5 (depth: 6): num
iLine 4 (depth: 6): if num < 2
jLine 5 (depth: 6): num
iLine 4 (depth: 4): if num < 2
‘Line 7 (depth: 4): fib(num-1) +
iLine 4 (depth: 5): if num < 2
iLine 7 (depth: 5): fib(num-1) +
tLine 4 (depth: 6): if num < 2
iLine 5 (depth: 6): num
tLine 4 (depth: 6): if num < 2
iLine 5 (depth: 6): num
tLine 4 (depth: 5): if num < 2
Line 5 (depth: 5): num
iLine 4 (depth: 3): if num < 2
sLine 7 (depth: 3): fib(num-1) +
iLine 4 (depth: 4): if num < 2
tLine 7 (depth: 4): fib(num-1) +
iLine 4 (depth: 5): if num < 2
(Line 7 (depth: 5): fib(num-1) +
Line 4 (depth: 6): if num < 2
iLine 5 (depth: 6): num
tLine 4 (depth: 6): if num < 2
iLine 5 (depth: 6): num
tLine 4 (depth: 5): if num < 2
'Line 5 (depth: 5): num
iLine 4 (depth: 4): if num < 2
fLine 7 (depth: 4): fib(num-1) +
fLine 4 (depth: 5): if num < 2
iLine 5 (depth: 5): num
iLine 4 (depth: 5): if num < 2
iLine 5 (depth: 5): num
tLine 13 (depth: 1): b = fib(7)

, 14] 1n app.rb S

5] num

6] else

7] fib(num-1) + fib(num-2)

8| end

9] end

fib(num-zf
fib(num—ZX}
fib(num-2)}
fib(num—Zf

fib(num-2)§

fib(num-2);
fib(num—Zf

fib(num—2)ﬂ
fib(num-2)}
£ib (num—2)]

fib(num-2)f

fib(num-2)f

]

4. Breakpoint commands

e Add/remove breakpoints without modifying the program

® Greatly increase the range of movement (e.g. debug gems without bundle
open)

® pbreak <file>:<num> and break <num> to add breakpoints
® break to list breakpoints

® cdelete <id> to delete breakpoints

1 require "debugger"
2 binding.debug
3
def fib(num)
if num < 2
num
else

fib(num-1) + fib(num-2)
end
10 end
11
12a = fib(6)
13b = fib(7)
14 puts a + b

6 module Debugger
7 class Session
8 def initialize

9 @breakpoints
10 end

66 def add _breakpoint(file, line, s*xoptions)

67 bp = LineBreakpoint.new(file, line, *xoptions)
68 @breakpoints << bp

69 puts "Breakpoint added: #{bp.location}"

70 bp.enable

71 end

(N

20 cmd, arg = input.split(™ ", 2)

21

22 case cmd

23 when "break"

24 case arg

25 when /\A(\d+)\z/

26 add_breakpoint(binding.source_location[@], $1l.to_i)
27 when /\A(.+) [:\s+](\d+)\z/

28 add_breakpoint($1, $2.to_i)

29 when nil

30 if @breakpoints.empty?

31 puts "No breakpoints"

32 else

33 @breakpoints.each_with_index do |bp, index|
34 puts "##{index} - #{bp.location}"
35 end

36 end

37 else

38 puts "Unknown break format: #{arg}"
39 end

Split input

22 case cmd
23 when "break"

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

case arg
when /\A(\d+)\z/
add_breakpoint(binding.source_location[@], $1l.to_i)
when /\A(.+) [:\s+] (\d+)\z/
add_breakpoint($1l, $2.to_i)
when nil
if @breakpoints.empty?
puts "No breakpoints"
else
@breakpoints.each_with_index do |bp, index|
puts "##{index} - #{bp.location}"
end
end
else
puts "Unknown break format: #{arg}"
end

Split input

22 case cmd
23 when "break"

[when /\A(\d+)\z/ |
Add breakpoints i add_breakpoint(binding.source_location[0], $1.to_i) |

twhen /\A(.+) [:\s+](\d+)\z/ |
| __add_breakpoint($1, $2.to i)]
S SR Sl S St et i i B
if @breakpoints.empty?
puts "No breakpoints"
else
@breakpoints.each_with_index do |bp, index|
puts "##{index} - #{bp.location}"
end
end
else
puts "Unknown break format: #{arg}"
end

Split input

22 case cmd
23 when "break"
g
fwhen /\A(\d+)\z/ |
Add breakpoints /j add_breakpoint(binding.source_location[0], $1.to_1i) §
twhen /\A(.+) [:\s+](\d+)\z/ ’
ﬁ_vadd_breakpolnt($1 $2.to_i)
fMEnhf ”‘ e e S A P R
if @breakpoints.empty?
puts "No breakpoints"
else
@breakpoints.each_with_index do |bp, index|
puts "##{index} - #{bp.location}"
; end i
else
puts "Unknown break format: #{arg}"

end

List breakpoints

eoeo
40 when "delete"
41 1index = arg.to_1
42
Delete breakpoints 43 if bp = @breakpoints.delete_at(index)

44 bp.disable

45 puts "Breakpoint ##{index} (#{bp.location}) has been deleted"
46 else

47 puts "Breakpoint ##{index} not found"

48 end

144class LineBreakpoint

145 def initialize(file, 1line)

146 @file = file

147 @line = line

148 @tp =

149 TracePoint.new(:line) do |tp|

150 # we need to expand paths to make sure they'll match
151 if File.expand_path(tp.path) == File.expand_path(@file) && tp.lineno == @line
152 SESSION.suspend! (tp.binding, bp: self)
153 end

154 end

155 end

156

157 def location

158 "#{@file}:#{@line}"

159 end

160

161 def name

162 "Breakpoint at #{location}"

163 end

164

165 def enable

166 @tp.enable

167 end

168

169 def disable

170 @tp.disable

171 end

172end

(N)

144class LineBreakpoint

145 def initialize(file, 1line)

146 @file = file

147 @line = line

148 fetp =

149 § TracePoint.new(:line) do |tp]|

150 # we need to expand paths to make sure they'll match {
151 if File.expand_path(tp.path) == File.expand_path(@file) && tp.lineno == @line |
152 § SESSION.suspend! (tp.binding, bp: self) :
153 |} end

154 §

155

156

157 def location

158 "#{@file}:#{@line}"

159 end

160

161 def name

162 "Breakpoint at #{location}"

163 end

164

165 def enable

166 @tp.enable

167 end

168

169 def disable

170 @tp.disable

171 end

172end

144class LineBreakpoint

145 def initialize(file, 1line)

146 @file = file

147 @line = line

148 @tp =

149 TracePoint.new(:line) do |tp|

150 # we need to expand paths to make sure they'll match
151 if File.expand_path(tp.path) == File.expand_path(@file) && tp.lineno == @line
152 SESSION.suspend!(tp.binding, bp: self)
153 end

154 end

155 end

156

157 def location

158 "#{@file}:#{@line}"

159 end

160

161 def name

162 "Breakpoint at #{location}"

163 end

164

165 def enable

166 @tp.enable

167 end

168

169 def disable

170 @tp.disable

171 end

172end

144class LineBreakpoint

145 def initialize(file, 1line)

146 @file = file

147 @line = line

148 @tp =

149 TracePoint.new(:line) do |tp|

150 # we need to expand paths to make sure they'll match
151 if File.expand_path(tp.path) == File.expand_path(@file) && tp.lineno == @line
152 SESSION.suspend!(tp.binding, bp: self)
153 e
154 end

155 end

156

157 def location

158 "#{@file}:#{@line}"

159 end

160

161 def name

162 "Breakpoint at #{location}"

163 end

164

165 def enable

166 @tp.enable

167 end

168

169 def disable

170 @tp.disable

171 end

172end

How does ruby/debug avoid this?

Collects ISeq objects from ObjectSpace
Locates the I1Seq object of the breakpoint location
Uses heuristic to check which line is best to stop the program

Activates TracePoint on that ISeq object’s specific line

How does ruby/debug avoid this?

Collects ISeq objects from ObjectSpace
Locates the I1Seq object of the breakpoint location
Uses heuristic to check which line is best to stop the program

Activates TracePoint on that ISeq object’s specific line

Reduces runtime overhead with more sophisticated breakpoint activation

1 require "debugger"
2 binding.debug
3
4 def fib(num)
if num < 2
num
else

fib(num-1) + fib(num-2)
end
10 end
11
12a = fib(6)
13b = fib(7)
14 puts a + b

4 def fib(num)
1f num < 2
num
else

fib(num-1) + fib(num-2)
end
10 end
11
12a = fib(6)
13b = fib(7)
14 puts a + b

5. Debugger executable

® Debug without requiring the debugger
o runs with debugger required

® Stop at the beginning of the program to receive further instructions (e.g.
breakpoint commands)

1 def fib(num)
1T num < 2
num
else
fib(num-1) + fib(num-2)
end

fib(6)
fib(7)
llputs a + b

S exe/debug app.rb

exe/debug

1 #!/usr/bin/env ruby
2

S exe/debug app.rb

3 program, *_ = ARGV
4
5 Kernel.exec({ "RUBYOPT" => "-Ilib -rdebugger" }, "ruby", program)

exe/debug

eoe
Wp\‘L“*\\ 1 #!/usr/bin/env ruby

S exe/debug app.rb > 2
g 3 program, *_ = ARGV

4

5 Kernel.exec({ "RUBYOPT" => "-Ilib -rdebugger" }, "ruby", program)

exec([env,] command... [,options])

Replaces the current process by running the given external command, which can take one of the following forms:

exe/debug

eoeo
1 #!/usr/bin/env ruby

S exe/debug app.rb _ | 2

3 program, *_ = ARGV

4

5 Kernel.exec({ "RUBYOPT" => "-Ilib -rdebugger" }, "ruby", program)

exec([env,] command... [,options])

Replaces the current process by running the given external command, which can take one of the following forms:

S RUBYOPT="-Ilib -rdebugger" ruby app.rb

exe/debug

o000
1 #!/usr/bin/env ruby
S exe/debug app.rb ,
3 program, *_ = ARGV
4
5 Kernel.exec({ "RUBYOPT" => "-Ilib -rdebugger" }, "ruby", program)
exec([env,] command... [,options])
Ice te cret process y ruig tgie extl omm, which can take one of the following forms:
lib/debugger.rb

oo e
187if ENVI["RUBYOPT"] && ENV["RUBYOPT"].split.include?("-rdebugger")

188 Debugger::SESSION.add_breakpoint($@, 1, once: true)
189end

S RUBYOPT="-Ilib -rdebugger" ruby app.rb

The Result - 189 lines

The Result - 189 lines

Recap

N
.. 1 require "debugger"
1 def fib(num) : def fib(num)
if num < 2 if num < 2
num num
else Reline else

fib(num-1) + fib(num-2)
end

binding.debug

Binding fib(num-1) + fib(num-2)
end
10 end
11
12a = fib(6)
13b = fib(7)
14puts a + b

fib(6)
fib(7)
11l puts a + b

Recap

00 00

1 require "debugger" 1 require "debugger"

2 2

3 def fib(num) 3 def fib(num)

4 1f num < 2 TracePoint 4 1f num < 2

5 num 5 num

6 else . 6 else

7 binding.debug Step-in 7 fib(num-1) + fib(num-2)
8 fib(num-=1) + fib(num-2) 8

9 end Step-over 9

10

11 binding.debug
12a = fib(6)
13b = fib(7)

14 puts a + b

10 end

11

12a = fib(6)
13b = fib(7)
14 puts a + b

00
1 require "debugger”

00
1 def fib(num)
if num < 2
num

else
fib(num-1) + fib(num-2)

def fib(num)
if num < 2
num
else Breakpoint commands

fib(num-1) + fib(num-2)
end

S exe/debug

2
3
4
5
6
7/
8
9

10

11 binding.debug
12a = fib(6)
13b = fib(7)

14 puts a + b

fib(6)
fib(7)
11 puts a + b

How to choose debugging tools?

Puts? Debuggers?

Level of abstraction f

Puts? Debuggers?

Level of abstraction f

Puts? Debuggers?

Level of abstraction f

Standard Libraries

Puts? Debuggers?

Level of abstraction 5

Standard Libraries

CRuby

Puts? Debuggers?

Ruby programs (e.g. Rails app)

Level of abstraction f

Standard Libraries

What CAN'T the debugger debug?

® [tself
® Reline
e Standard libraries

® CRuby (e.g. TracePoint, Binding)

Side-effects

® [racePoint
® Tracks and retains data

® Stop/resume threads

Puts? Debuggers?

Ruby programs (e.g. Rails app)

Level of abstraction

Standard Libraries

X debugger written in Ruby

Puts? Debuggers?

Ruby programs (e.g. Rails app)

Level of abstraction f

Standard Libraries

gdb
¢ lldb

Puts? Debuggers?

Ruby programs (e.g. Rails app)

Level of abstraction f
Standard Libraries I puts IRB

gdb
t lidb

Puts? Debuggers?

ruby/debug
Ruby programs (e.g. Rails app) byebug
Level of abstraction
Standard Libraries I puts IRB
‘ gdb

lldb

Puts? Debuggers?

ruby/debug Ruby LSP
byebug

Ruby programs (e.g. Rails app)

Level of abstraction

Standard Libraries , I puts IRB

gdb
lidb

GitHub Repo

https://github.com/st0012/mini-debugger

Next Steps

e Make and accept a argument
® e.g. does 2 steps
® |[mplement command

® Breakpoints triggered when an exception is raised
® |mplement command

® Finish the current frame

Thanks for listening

