
Build a mini Ruby debugger in
under 300 lines

Stan Lo

Build a mini Ruby debugger in
under 300 200 lines

Stan Lo

About me

About me
• 🇹🇼 🇬🇧

About me

• Ruby Developer Experience Team

• 🇹🇼 🇬🇧

About me

• Ruby Developer Experience Team

• 🇹🇼 🇬🇧

About me

• Ruby Developer Experience Team

• 🇹🇼 🇬🇧

About me

• Ruby Developer Experience Team

• Maintainer of IRB, Reline, and sentry-ruby

• 🇹🇼 🇬🇧

About me

• Links:

• GitHub: @st0012 Twitter: @_st0012

• ruby.social: @st0012

• https://st0012.dev

• Ruby Developer Experience Team

• Maintainer of IRB, Reline, and sentry-ruby

• 🇹🇼 🇬🇧

Why?

Why?

• Familiarise yourself with debugging tools

Why?

• Familiarise yourself with debugging tools

• Grasp debugger implementation for informed usage decisions

Why?

• Familiarise yourself with debugging tools

• Grasp debugger implementation for informed usage decisions

• Learn to build custom debugging tools

Overview

• 5 steps with

• Demo

• Implementation overview

• A complementary GitHub repository

0. Key components

• Binding objects and Kernel#binding

• TracePoint class

• Reline library

Binding & Kernel.binding

• Objects of class Binding encapsulate the execution context at some particular
place in the code and retain this context for future use.

• If you get a Binding object, likely through Kernel#binding, you can access the
context it captures.

https://docs.ruby-lang.org/en/3.2/Binding.html

TracePoint & line event
• TracePoint allows you to trace different type of Ruby execution events.

• E.g. :raise, :call, :line…etc.

• The :line event is triggered by line executions, which has access to:

• Line number

• File path

• Binding

TracePoint

• Convenient for debugging, but bad for performance

• Most TracePoint events cancel out YJIT’s optimisation

• Don’t use it in production

Reline

• Powers essential Ruby tools: IRB and ruby/debug

• Feature-rich with capabilities like:

• Autocompletion

• Multi-line input

• Input history

• (Note: We won't be utilising these advanced features in this talk)

Reline - Example

Reline - Example

Reline - Example

Reline - Example

Reline - Example

Reline - Example

Steps

1. Breakpoint and REPL (binding.debug)

2. Step-in (step)

3. Step-over (next)

4. Breakpoint commands (break and delete)

5. Debugger executable (exe/debug)

1. Breakpoint and REPL

• Stop program execution with binding.debug

• Open a REPL (Read-eval-print loop)

• Supports commands to continue or exit the program

2. Step-in

• Once received step, the debugger steps to the next program execution

• Allows us to move deeper into the program

❌ Debugger execution

❌ Standard/default libraries

❌ Ruby internal

✅ Their program’s next execution

3. Step-over

• Once received next, the debugger steps to the next line

• Skip detail executions

4. Breakpoint commands

• Add/remove breakpoints without modifying the program

• Greatly increase the range of movement (e.g. debug gems without bundle
open)

• break <file>:<num> and break <num> to add breakpoints

• break to list breakpoints

• delete <id> to delete breakpoints

Split input

Split input

Add breakpoints

Split input

Add breakpoints

List breakpoints

Delete breakpoints

How does ruby/debug avoid this?

• Collects ISeq objects from ObjectSpace

• Locates the ISeq object of the breakpoint location

• Uses heuristic to check which line is best to stop the program

• Activates TracePoint on that ISeq object’s specific line

How does ruby/debug avoid this?

• Collects ISeq objects from ObjectSpace

• Locates the ISeq object of the breakpoint location

• Uses heuristic to check which line is best to stop the program

• Activates TracePoint on that ISeq object’s specific line

• Reduces runtime overhead with more sophisticated breakpoint activation

🎉🍶🍻

5. Debugger executable

• Debug without requiring the debugger

• $ exe/debug app.rb runs app.rb with debugger required

• Stop at the beginning of the program to receive further instructions (e.g.
breakpoint commands)

$ exe/debug app.rb

exe/debug

$ exe/debug app.rb

exe/debug

$ exe/debug app.rb

exe/debug

$ exe/debug app.rb

$ RUBYOPT="-Ilib -rdebugger" ruby app.rb

exe/debug

$ exe/debug app.rb

$ RUBYOPT="-Ilib -rdebugger" ruby app.rb

lib/debugger.rb

The Result - 189 lines

The Result - 189 lines

Recap

Reline

Binding

Recap

TracePoint

Step-over

Step-in

Recap

Breakpoint commands

$ exe/debug

How to choose debugging tools?

Puts? Debuggers?

Level of abstraction

Puts? Debuggers?

CRuby

Level of abstraction

Puts? Debuggers?

CRuby

Standard Libraries

Level of abstraction

Puts? Debuggers?

CRuby

Standard Libraries

Level of abstraction
Gems

Ruby programs (e.g. Rails app)

Puts? Debuggers?

CRuby

Standard Libraries

Level of abstraction
Gems

What CAN’T the debugger debug?

• Itself

• Reline

• Standard libraries

• CRuby (e.g. TracePoint, Binding)

Side-effects

• TracePoint

• Tracks and retains data

• Stop/resume threads

Ruby programs (e.g. Rails app)

Puts? Debuggers?

CRuby

Standard Libraries

Level of abstraction
Gems

❌ debugger written in Ruby

Ruby programs (e.g. Rails app)

Puts? Debuggers?

CRuby

Standard Libraries

Level of abstraction
Gems

gdb

lldb

Ruby programs (e.g. Rails app)

Puts? Debuggers?

CRuby

Standard Libraries

Level of abstraction
Gems

gdb

lldb

puts IRB

Ruby programs (e.g. Rails app)

Puts? Debuggers?

CRuby

Standard Libraries

ruby/debug

byebug

Level of abstraction

puts
Gems

gdb

lldb

IRB

Ruby programs (e.g. Rails app)

Puts? Debuggers?

CRuby

Standard Libraries

ruby/debug

byebug

Level of abstraction

puts
Gems

gdb

lldb

IRB

Ruby LSP

GitHub Repo

https://github.com/st0012/mini-debugger

Next Steps

• Make step and next accept a <n> argument

• e.g. step 2 does 2 steps

• Implement catch command

• Breakpoints triggered when an exception is raised

• Implement finish command

• Finish the current frame

Thanks for listening

