ruby/debug

The best investment for your productivity

2022-11-14

Al shopify

Hello &y I’'m Stan

Al shopify

Hello & I’'m Stan

» Taiwanese i Live in London Ef&

Al shopify

Hello & I’'m Stan

» Taiwanese i Live in London Ef&

+ Active contributor of ruby/debug and IRB

Al shopify

Hello & I’'m Stan

» Taiwanese i Live in London Ef&

+ Active contributor of ruby/debug and IRB

+ Work at Shopify’s Ruby Developer Experience Team

Al shopify

Hello &/ I’'m Stan

" 4

https://github.com/Shopify/ruby-Isp

> fixtures > rails_app > models > model.rb > Ruby LSP > %3 Post
class Post < ActiveRecord: :Base
* Taiwanes belongs_to :

ena

» Active cg

* Work at

Hello & I’'m Stan

» Taiwanese i Live in London Ef&

+ Active contributor of ruby/debug and IRB
* Work at Shopify’s Ruby Developer Experience Team

+ Maintainer of sentry-ruby

Al shopify

Hello & I’'m Stan

» Taiwanese i Live in London Ef&

+ Active contributor of ruby/debug and IRB

+ Work at Shopify’s Ruby Developer Experience Team

+ Maintainer of sentry-ruby

- @ Pubs Ip

Al shopify

Hello & I’'m Stan

* Taiwanese # Live in London E&
+ Active contributor of ruby/debug and IRB
+ Work at Shopify’s Ruby Developer Experience Team
+ Maintainer of sentry-ruby
- @ Pubs In
+ Github: @st0012 Twitter: @_st0012
Mastodon: @st0012@ruby.social

Al shopify

10 June, 2019

Al shopify

10 Jun

RUC

« About us
o Want to speak?

Archives By Year

. 2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006

(%] Meeting Calendar

June 2019 Meeting

The June 2019 meeting of LRUG will be on Monday the 10th of June, from o
6:00pm to 8:00pm (meeting start at 6:30pm). The venue, Code Node between Hosted By

Moorgate and Liverpool St. stations, is provided by Skills Matter. Full venue and
registration details are given below.

Agenda has

User-First Internationalisation
Tom Lord:

Expanding a website internationally comes with many challenges; perhaps none more
difficult than translating its content. In this talk, we will discuss pros and cons of various
tools and techniques that my team have used to tackle this problem in ruby (along with
some insight into how this differs for statically typed languages) - with a pragmatic goal of
providing the best possible end-user experience at all times.

Simplify writing code with deliberate commits

Joel Chippindale:

As developers, a key part of our work, is in breaking down large gnarly complex problems
into smaller simpler ones. But this is hard and there are many distractions along the way.
In this talk I will take you through 5 habits to adopt around commiting your code which
will help you keep focussed on these smaller simpler problems and make it easier for you
to write good code.

A practical guide for conducting efficient code reviews

Goncalo Morais

RIR 1IVpI y

10 Jun

June 2019 Meeting

cills matter

« About us
« Want to speaks?

Archives By

. 2022
. 2021
. 2020
e 2019
* 2018
. 2017
e 2016
e 2015
. 2014
e 2013
e 2012
e 2011
e 2010
e 2009
e 2008
. 2007
* 2006

(%] Meeting Cale

Goncalo Morais

RIR 1IVpI y

Let’s Talk About Debugging

Al shopify

What’s Your Primary Debugging Tool?

Al shopify

What Do Ruby Developers Use For Debugging?

Al shopify

What is your go-to Ruby debugger tool?

Other

Ruby Debug

Byebug

Pry

S
&

7%

N%

o -

1
100

1
200

I I I ! I
300 400 500 600 700

Total

https://rails-hosting.com/2022

I
800

I
900

!
1000

I
1100

I
1200

W\EI&AON (ET CONTACT
proudly
presents

Ruby on Rails Survey 2022

Back in 2009, we invited our community to participate in the first survey about the state of hosting Ruby
on Rails applications. Over the years, we've evolved this to include questions about tools, frameworks,
and workflows in order to see how the environment is changing.

Now in its seventh incarnation, we invite you to take a stroll through the data and our findings. We've also invited members of

the communityto share their thoughts, which we've included throughout the site.

THE RESULTS ARE IN!

https://rails-hosting.com/2022

W\EL‘-'-AON (ET CONTACT
proudly
presents

P2

Back in 2009, we invit state of hosting Ruby
on Rails applications. ools, frameworks,

and workflows in orde

Now in its seventh incarnat R E S p O N D E NTS also invited members of

the communityto share the

https://rails-hosting.com/2022

What is your go-to Ruby debugger tool?

Other

Ruby Debug

Byebug

Pry

S
&

7%

N%

o -

1
100

1
200

I I I ! I
300 400 500 600 700

Total

https://rails-hosting.com/2022

I
800

I
900

!
1000

I
1100

I
1200

What is your go-to Ruby debugger tool?

Other n

Pry is a powerful alternative to the standard IRB shell for Ruby. It features syntax
highlighting, a flexible plugin architecture, runtime invocation and source and
documentation browsing.

o 100 200 300 400 500 600 700 800 900 1000 1100 1200

Total

https://rails-hosting.com/2022

Why Don’t People Use Debuggers?

Al shopify

Common Debugger Features

- Step-debugging
- Frame Navigation

- Breakpoint Commands

A shopify

Common Debugger Features

- Step-debugging
- Frame Navigation
- Breakpoint Commands

- Scriptable Breakpoint (ruby/debug only)

Al shopify

Example

Ildebugll
“lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb

Example

Ildebugll
"lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb

Example

Ildebugll
“lib.rb"

binding.b

result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb

Example

Ildebugll
“lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb

Example

Ildebugll
“lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb

Example

"debug" - require the debugger
“lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb

Example

"debug" - require the debugger
“lib.rb"

binding.b - set a breakpoint

result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb

Entering a debugging session

[1, 10] main.rb
1] “debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")

=>

(rdbg)

Entering a debugging session

[1, 10] main.rb
1] “debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}"

Entering a debugging session

[1, 10 main.rb
1] "debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")

=>

(rdbg)

Entering a debugging session

[1, 10] main.rb
1] “debug"
2| "lib.rb"
3|

(= 4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")
- . . ‘

(rdbg)

Entering a debugging session

[1, 10] main.rb
1] “debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")

=>

(rdbg)

Entering a debugging session

[1, 10] main.rb
1] “debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")

=>

(rdbg)

Step Debugging

Micro-managing our program

Al shopify

Step Debugging

$ ruby main.rb

[1, 10]
1]
2|
3|

main.rb
"debug”
“Tib.rb"

4| binding.b

S|
6]
7]
8|
9|
10|

result = foo(100)

result == 202
puts("foo works as expected")

puts("foo returned incorrect value: #{result}")

<main>

Step Debugging

$ ruby main.rb

[1, 10]
1]
2|
3|

main.rb
"debug”
“Tib.rb"

4| binding.b

S|
6]
7]
8|
9|
10|

result = foo(100)

step

puts("foo works as expected")

result == 202

puts("foo returned incorrect value: #{result}")

<main>

Step Debugging

$ ruby main.rb

[1, 10]
1]
2|
3|

main.rb
"debug”
“Tib.rb"

4| binding.b

S|
6]
7]
8|
9|
10|

result = foo(100)

step

puts("foo works as expected")

result == 202

puts("foo returned incorrect value: #{result}")

next

<main>

Step Debugging

$ ruby main.rb

[1, 10]
1]
2|
3|

main.rb
"debug”
“Tib.rb"

4| binding.b

S|
6]
7]
8|
9|
10|

result = foo(100)

result == 202
puts("foo works as expected")

puts("foo returned incorrect value: #{result}")

<main>

Step Debugging

(rdbg) s
[1, 10]
1|
2|
3]

main.rb
"debug”
“Tib.rb"

4| binding.b

S|
6]
7]
8|
9|
10|

result = foo(100)

result == 202
puts("foo works as expected")

puts("foo returned incorrect value: #{result}")

<main>

Step Debugging

(rdbg) s

[1, 10] main.rb
1| "debug"
2| “lib.rb"
3
4| binding.b

(::) 5| result = foo(100)
6|
7| result == 202
8| puts("foo works as expected")
9|
10| puts("foo returned incorrect value: #{result}")

<main>

Step Debugging

(rdbg) s

[1, 10] main.rb
1| "debug"
2| “lib.rb"
3
4| binding.b

5| result = foo(100)

result == 202
puts("foo works as expected")

puts("foo returned incorrect value: #{result}")

<main>

Step Debugging

lib.rb
foo(n)
bar(n)

bar(n)
baz(n)

baz(n)
num = plus_1(n)

foo

<main>

Step Debugging

bar(n)

bar(n)
baz(n)

baz(n)
num = plus_1(n)

foo

<main>

Step Debugging

lib.rb
foo(n)
bar(n)

bar(n)
baz(n)

baz(n)
num = plus_1(n)

foo

<main>

Step Debugging

(rdbg) s 2
[5, 14] lib.rb
5] bar(n)
6| baz(n)
7|
8|
9| baz(n)
10| num = plus_1(n)
11| double(num)
12|
13|
14 | plus_1(n)

Step Debugging

(rdbg) s 2
[5, 14] lib.rb
5] bar(n)
6| baz(n)
7|
8|
9| baz(n)
10| num = pluiswlln)
11| double(num)
12|
13|
14 | plus_1(n)

Step Debugging

(rdbg) s 2
[5, 14] lib.rb
5] bar(n)
6| baz(n)
7|
8|
9| baz(n)
10| num = pluiswlln)
11| double(num)
12|
13|
14 | plus_1(n)

Step Debugging

(rdbg) s 2
[5, 14] lib.rb
5] bar(n)
6| baz(n)
7|
8|
9| baz(n)
10| num = pluiswlln)
11| double(num)
12|
13|
14 | plus_1(n)

Step Debugging

(rdbg) n

[6, 15]
6|
7|
8|
9|

11

lib.rb
baz(n)

baz(n)
num = plus_1(n)

double(num)

plus_1(n)

baz

bar

foo

<main>

Step Debugging

baz(n)
num = plus_1(n)
double(num)

1(n)

(rdbg) i

%self = main
= 100

num = 99

(rdbg)

baz

bar

foo

<main>

Step Debugging

baz(n)
num = plus_1(n)
double(num)

1(n)

(rdbg) 1 baz
%self = main bar
n = 100

num = 99 foo

(rdbg)

<main>

Step Debugging

baz(n)
num = plus_1(n)
double(num)

1(n)

(rdbg) 1 baz
%self = main bar
n = 100

num = 99 foo

(rdbg)

<main>

Step Debugging

baz(n)
num = plus_1(n)
double(num)

1(n)

(rdbg) 1 baz
%self = main bar
n = 100

num = 99 foo

(rdbg)

<main>

Step Debugging

Step Debugging

(rdbg) num
99
(ruby) methods.count

66
(rdbg) 1s
.methods: inspect to_s
locals: n num
(rdbg)

Step Debugging

(rdbgz num

99

(ruby) methods.count

66
(rdbg) 1s
.methods: inspect to_s
locals: n num
(rdbg)

Step Debugging

(rdbgz num

99
(ruby) methods.count

.methods: inspect to_s
locals: n num
(rdbg)

Step Debugging

(rdbgz num

99

(ruby) methods.count

o]¢}

.methods: inspect to_s
locals: n num
(rdbg)

Step Debugging

<main> ===

Step Debugging

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step

Frame Navigation
The best friend of step-debugging

Al shopify

Frame Navigation

double

baz

bar

foo

<main>

Frame Navigation

double

baz

bar

foo

<main>

Frame Navigation

double

baz

bar

foo

<main>

Frame Navigation

double

baz

bar

foo

<main>

Frame Navigation

double

baz

Nl

foo

<main>

Frame Navigation

double

baz

Nl

foo

<main>

Frame Navigation

double

baz

bar

foo

<main>

Frame Navigation

double

baz

double

bar

baz

foo

bar

<main>

foo

<main>

Frame Navigation

double

baz

double

bar

baz

foo

bar

<main>

foo

<main>

Frame Navigation

double

baz

double

bar

baz

foo

bar

<main>

foo

<main>

Frame Navigation

up

Frame Navigation

up

Frame Navigation

up

Frame Navigation

EE N O I (V)

double

baz

bar

foo

<main>

Frame Navigation

EE N O I (V)

double

baz

bar

foo

<main>

\

0 double
1 baz
2 bar
3 foo
4 <main>
__®

Frame Navigation

EE N O I (V)

double == 0 double
baz 1 baz =
bar 2 bar
foo 3 foo
<main> 4 <main>
— .

0 double

1 baz

2 bar

3 foo

4 <main>
I

up

Frame Navigation

baz

bar

foo

<main>

Frame Navigation

(rdbg) s
[14, 20] lib.rb
14| plus_1(n)
15| n-1
16|
17|
18| double(n) double
19| n * 2
20| baz
bar
foo
<main>

Frame Navigation

(rdbg) up
=> 11| double(num)

=>
(rdbg) list
6| baz(n)

L‘ﬁ;(n)
num = plus_1(n)
double(num)

plus_1(n)
n-1

double

baz

bar

foo

<main>

Frame Navigation

(rdbg) down
=> 19| n * 2
=>
(rdbg) list
14 | plus_1(n)

15| n-1

16 |

17|

18| double(n)
=> 19|

20 |
(rdbg)

double

baz

bar

foo

<main>

Frame Navigation

double

baz

bar

foo

<main>

Frame Navigation

(rdbg) frame 4
5| result = foo(100)

(rdbg) list

||debug||
“1ib.rb"

4| binding.b

5| result = foo(100)

6]

7| result == 202

8] puts("foo works as expected")

9

10| puts("foo returned incorrect value: #{result}")
(rdbg)

double

baz

bar

foo

<main>

Step-debugging + Frame Navigation

<main> &=

Step-debugging + Frame Navigation

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step

Step-debugging + Frame Navigation

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step

Step-debugging + Frame Navigation

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step

Step-debugging + Frame Navigation

bar Y
foo e foo
<main> == <main> <main>

baz

bar

foo

<main>

R

step step step

Step-debugging + Frame Navigation

bar Y
foo e foo
<main> == <main> <main>

baz

bar

foo

<main>

I

step step step

Step-debugging + Frame Navigation - Commands

Command Command
Step in s[tep] Show backtrace | bt, backtrace
Step over n[ext] Display variables | j[nfo]
Finish fin[ish]
Move to frame flrame] <id>
Move up a frame up

Move down a frame down

Continue c[ontinue]

Al shopify

Breakpoint Commands

Teleporting in our program

A shopify

Breakpoint Commands - Example

show

@post = find_post
binding.b

A shopify

Breakpoint Commands - Example

show

@post = find_post
binding.b

A shopify

Breakpoint Commands - Example

show

@post = find_post
binding.b

A shopify

Breakpoint Commands - Don’t Do This: The Stepping Warrior Way

show

@post = find_p
binding.b

imgfiip.com

Al shopify

pping Warrior Way

OO

app;/
def sh
@pos
bi.ndimS
othim

da Dug nere

img

end

img

Breakpoint Commands - Don’t Do This: The Pry Way

¢t 1.0pen app/models/post.rb

2.Put another binding.b in Post#title

e f-md_po, 3.Restart the program
binding.b . .
i 4.Stop at PostsController#show again

t 5.Type @post.title

Breakpoint Commands - Teleport with breakpoints

show

@post = find_post
binding.b

Al shopify

Breakpoint Commands - Teleport with breakpoints

wost - rnapost (rdbg) break @post.title ‘.

binding.b

Al shopify

Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]

Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]

Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]

Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]

Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]

Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]

Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
dellete] <id>

dellete]

Step-debugging + Frame Navigation + Breakpoint Commands

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step

Step-debugging + Frame Navigation + Breakpoint Commands

ba =
bar — bar
foo — foo foo
<<<<<< ‘ — <main> <main> <main> —
p step step

Step-debugging + Frame Navigation + Breakpoint Commands

Investigation -1 (binding.b)

Step-debugging + Frame Navigation + Breakpoint Commands

Investigation -1 (binding.b)

- = =i
— o

—

Set destination (break Foo#bar)

Step-debugging + Frame Navigation + Breakpoint Commands

Investigation -1 (binding.b)

—

=

hary |

— o

Set destination (break Foo#bar)

continue

Triggers breakpoint

Step-debugging + Frame Navigation + Breakpoint Commands

Investigation -1 (binding.b) Investigation - 2 (Foo#bar)

e == -
- o — o

continue

—

>

Set destination (break Foo#bar)

hary |

Mobility Inside A Running Program

Al shopify

Mobility Inside A Running Program

- Reduced program execution
- Reduced code editing

 Reduced distraction

Scriptable Breakpoint

Debug like we program

Al shopify

Scriptable Breakpoints

binding.b

A shopify

Scriptable Breakpoints

binding.b
Known actions

A shopify

Scriptable Breakpoints

binding.b

Known actions Unknown actions

Al shopify

Scriptable Breakpoints

info
binding.b

Known actions Unknown actions

A shopify

Scriptable Breakpoints

info @foo.bar?
binding.b

Known actions Unknown actions

A shopify

Scriptable Breakpoints

info break foo.baz
binding.b

Known actions Unknown actions

A shopify

Scriptable Breakpoints

info break foo.baz

binding.b
Known actions Unknown actions

break foo.baz

Al shopify

Scriptable Breakpoints

info @foo.bar? @break foo.baz
binding.b

Known actions Unknown actions

break foo.baz
break foo.baz

Al shopify

Scriptable Breakpoints

info break foo.baz
binding.b

Known actions Unknown actions

A shopify

Scriptable Breakpoints

binding.b (pre: "info ;; foo.bar? ;; break foo.baz")

Known actions Unknown actions

A shopify

Scriptable Breakpoints - The "pre" and "do" keywords

Al shopify

Scriptable Breakpoints - The "pre" and "do" keywords

* binding.b(pre: "cmd")
1. Execute <cmd>

2. Stops at the breakpoint

Al shopify

Scriptable Breakpoints - The "pre" and "do" keywords

* binding.b(pre: "cmd")
1. Execute <cmd>

2. Stops at the breakpoint
* binding.b(do: "cmd")

1. Execute <cmd>

2. Continue the program

A shopify

Scriptable Breakpoints - Multiple Commands

- Separate commands or expressions with ";;"
 binding.b(do: "cmd1 ;; cmd2")

 binding.b(pre: "var = foo ;; bar(var)")

A shopify

Scriptable Breakpoints - Breakpoint Commands Support

- (rdbg) break Foo#bar do: info
- (rdbg) catch StandardError pre: bt

A shopify

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign())
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign())
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign())
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign())
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old encryptor = ActiveSupport: :MessageEncryptor.new old secret

activesupport-7.0.3.1/1lib/active_support/message_verifier.rb:178:in ‘verify':
ActiveSupport: :MessageVerifier::InvalidSignature (ActiveSupport::MessageVerifier::InvalidSignature)

NEW_CTICTYPLOT .TOLAlS OLU_SCLTICL

|
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign())
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)

new_encryptor ActiveSupport: :MessageEncryptor.new new_secret
new_encryptor.rotate old_secret

binding.b(do: "1 ;; break new_encryptor.decrypt_and_verify pre: i")

1
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

info

new_encryptor.rotate old_secret
binding.b(do: "1 ;; break new_encryptor.decrypt_and_verify pre: i")

1
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

info break new_encryptor.decrypt_and_verify

new_encryptor.rotate oilo_secret

binding.b(do: "1 ;; break new_encryptor.decrypt_and_verify pre: i")

(I |
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

info break new_encryptor.decrypt_and_verify

new_encryptor.rotate oilo_secret

binding.b(do: "1 ;; break new_encryptor.decrypt_and_verify pre: i")

(I |
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

info break new_encryptor.decrypt_and_verify

new_encryptor.rotate oilo_secret

binding.b(jdof "1 ;; break new_encryptor.decrypt_and_verify pre: i1")

(I |
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

break new_encryptor.decrypt_and_verify

new_encryptor.rotate oilo_secret

binding.b(do: %1 §; break new_encryptor.decrypt_and_verify pre: i1")

(I |
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

binding.b(do: "1 ;;ibreak new_encryptor.decrypt_and_verify

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")

Scriptable Breakpoints - Example

old_secret = .base64(24)
old_encryptor = ActiveSupport: :MessageEncryptor.new old_secret

new_secret = .base64(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

binding.b(do: "1 ;; break new_encryptor.decrypt_and_verifyipre: i}')

1
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")

[12, 21] in test.xb
12| new_encryptor = ActiveSupport: :MessageEncryptor.new new_secret
13|
14| # let the new encryptor rotate to old_secret when needed
15| new_encryptor.rotate old_secret
16|
=> 17| binding.b(do: "i ;; break new_encryptor.decrypt_and_verify pre: i")
18|
19| # the new encryptor should descrypt the message after rotating to the old secret
20| msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(nil))
21| puts("Message is #{msg.inspecti") #=> Message is nil
=>{l0 <main> at test.rb:17
(rdbg:binding.break) i
%self = main
old_secret = "2LRx1680gB/023KjhIkFzHck1pSJIOHvL"
old_encryptor = #<ActiveSupport::MessageEncryptor:0x00000001046be388 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHvVL", @sign_secret=ni...>
new_secret = "BwIjFx+YSGRbkp9yU219CkLiwveQJjl13"
new_encryptor = #<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=ni...>
msg = nil
(rdbg:binding.break) break new_encryptor.decrypt_and_verify pre: i
#0 IR AEEE new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support/
messages/rotator.rb:21 pre: i
[17, 26] in ~/.gem/xruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(*args, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, *xoptions) } || raise
25| end
26|

=>{10 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LS0zQ29..., on_rotatio
n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22

[12, 21] in test.xb
12| new_encryptor = ActiveSupport: :MessageEncryptor.new new_secret
13|
14| # let the new encryptor rotate to old_secret when needed
15| new_encryptor.rotate old_secret
16|
=> 17| binding.b(do: "i ;; break new_encryptor.decrypt_and_verify pre: i")
18|
19| # the new encryptor should descrypt the message after rotating to the old secret
20| msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(nil))
21| puts("Message is #{msg.inspecti") #=> Message is nil
>3O <main> at test.rb:17
b(rdbg:binding.break) i
Piself = main
bold_secret = "2LRx1680gB/023KjhIkFzHck1pSIOHVL"
gold_encryptor = #<ActiveSupport::MessageEncryptor:0x00000001046be388 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHVL", @sign_secret=ni...
inew_secret = "BwIjFx+YSGRbkp9yU219CkLiwveQJj13"
f'en_encrypto: = #<ActiveSupport: :MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJlj13", @sign_secret=ni...

e - . sporuon . i
BP - Method new_encryptor. decrypt and verlfy at /Users/hung wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support/

messages/rotator.rb.Zl pre: i

[17, 26] in ~/.gem/xruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(*args, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, *xoptions) } || raise
25| end
26|

=>{10 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LS0zQ29..., on_rotatio
n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22

[12, 21] in test.xb
12| new_encryptor = ActiveSupport: :MessageEncryptor.new new_secret
13|
14| # let the new encryptor rotate to old_secret when needed
15| new_encryptor.rotate old_secret
16|
=> 17| binding.b(do: "i ;; break new_encryptor.decrypt_and_verify pre: i")
18|
19| # the new encryptor should descrypt the message after rotating to the old secret
20| msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(nil))
21| puts("Message is #{msg.inspecti") #=> Message is nil
=>{l0 <main> at test.rb:17
(rdbg:binding.break) i
%self = main
old_secret = "2LRx1680gB/023KjhIkFzHck1pSJOHvL"
old_encryptor = #<ActiveSupport::MessageEncryptor:0x00000001046be388 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHvVL", @sign_secret=ni...>
new_secret = "BwIjFx+YSGRbkp9yU219CkLiwveQJj13"
new_encryptor = #<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=ni...>
msg = nil
rdbg:binding.break) break new_encryptor.decrypt_and_verity pre: 1
O ARG UEEE new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support
essages/rotator.rb:21 pre: i
[17, 26] in ~/.gem/xuby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support/messages/rotator.rb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(*args, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, *xoptions) } || raise
25| end
26|

=>{10 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LS0zQ29..., on_rotatio
n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22

[17, 56] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.xb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, *xoptions) } || raise
25| end
26|

=>#0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWKkO3UTO9LS0zQ29..., on_rotatio
n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22
i <main> at test.rb:20

Stop by #0 new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_
support/messages/rotator.xb:21 pre: i

(xdbg:break) i

%self = #i<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=nil, @ciph...>
args = ["Tkxwcjl2MWpFalU@S1NYQU1ZWkO3UTO9ILSOZzQ29xRWIEZGhySFp6QXVyUGxyYVh3PTO=--8fe73db0fa8ed2ac7d3b53e1980b035290a90ba5"]
on_rotation = nil

options = {}

@aead_mode = false

@ciphexr = "aes-256-cbc"

@digest = "SHA1"

@on_rotation = nil

@options = {%

@rotations = [#<ActiveSupport::MessageEncryptor:0x00000001046bccl8 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHVL", @sign_secret=nil,
@secret = "BwIjFx+YSGRbkp9yU219CkLiwveQJj13"

@serializer = Marshal

@sign_secret = nil

@verifier = #<ActiveSupport::MessageVerifier:0x00000001046bd140 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @digest="SHA1l", @ser...>
(xdbg)

f[17, 26] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support/messages/rotator.rb

17|

18| module Encryptor

19| include Rotator

20|

21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)

22| super

24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, *xoptions) } || raise

25| end

' 26|

§=>7H0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcj1l2MWpFalUOSINYQU1ZWKkO3UTO9LS0zQ29..., on_rotatiq
In=nil, options=§{}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22

i <main> at test.rb:20

Stop by #0 new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active
ksupport/messages/rotator.rb:21 pre: i

(xdbg:break) i

%self = #i<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=nil, @ciph...>
args = ["Tkxwcjl2MWpFalU@S1NYQU1ZWkO3UTO9ILSOZzQ29xRWIEZGhySFp6QXVyUGxyYVh3PTO=--8fe73db0fa8ed2ac7d3b53e1980b035290a90ba5"]
on_rotation = nil

options = {}

@aead_mode = false

@ciphexr = "aes-256-cbc"

@digest = "SHA1"

@on_rotation = nil

@options = {%

@rotations = [#<ActiveSupport::MessageEncryptor:0x00000001046bccl8 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHVL", @sign_secret=nil,
@secret = "BwIjFx+YSGRbkp9yU219CkLiwVeQJj13"

@serializer = Marshal

@sign_secret = nil

@verifier = #<ActiveSupport::MessageVerifier:0x00000001046bd140 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @digest="SHA1", @ser...>
(xdbg)

23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature 1

[17, 56] in ~/.gem/ruby/3.1.2/gems/activesupport—7.0.3.1/lib/active_support/messages/rotator.rb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, *xoptions) } || raise
25| end
26|

=>#0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LS0zQ29..., on_rotatio
n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22
i <main> at test.rb:20

Stop by #0 new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_
support/messages/rotator.rb:21 pre: i

f(rdbg:break) i

wself = iF<ActiveSupport: :MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJjl3", @sign_secret=nil, @ciph...
:.rgs = ["Tkxwcjl2MWpFalUGSINYQU1ZWkO3UTO9LS0zQ29xRWIEZGhySFp6QXVyUGxyYVh3PTO=--8fe73db0fa8ed2ac7d3b53e1980b035290a90ba5"]
fon_rotation = nil

foptions = i}

daead_mode = false

B@cipher = "aes-256-chc"

f@digest = "SHAL"

don_rotation = nil

l'options = 4t

B@rotations = [#<ActiveSupport::MessageEncryptor:0x00000001046bccl8 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHVL", @sign_secret=nil,
j@secret = "BwIjFx+YSGRbkp9yU219CkLiwVeQJj13"

k@serializer = Marshal

l@sign_secret = nil

feverifier = #<ActiveSupport;:MessageVerifier:0x00000001046bd140 @secret="BwIiFx+YSGRbkpOyU219Ckl iwVe0Jjl13", @digest="SHAL" @ser.
(xdbg)

[17, 56] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.xb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, *xoptions) } || raise
25| end
26|

=>#0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWKkO3UTO9LS0zQ29..., on_rotatio
n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22
i <main> at test.rb:20

Stop by #0 new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_
support/messages/rotator.xb:21 pre: i

(xdbg:break) i

%self = #i<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=nil, @ciph...>
args = ["Tkxwcjl2MWpFalU@S1NYQU1ZWkO3UTO9ILSOZzQ29xRWIEZGhySFp6QXVyUGxyYVh3PTO=--8fe73db0fa8ed2ac7d3b53e1980b035290a90ba5"]
on_rotation = nil

options = {}

@aead_mode = false

@ciphexr = "aes-256-cbc"

@digest = "SHA1"

@on_rotation = nil

@options = {%

@rotations = [#<ActiveSupport::MessageEncryptor:0x00000001046bccl8 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHVL", @sign_secret=nil,
@secret = "BwIjFx+YSGRbkp9yU219CkLiwveQJj13"

@serializer = Marshal

@sign_secret = nil

dverifier = #<ActiveSupport::MessageVerifier:0x00000001046bd140 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @digest="SHA1", @ser...>

Scriptable Breakpoints - Benefits

Reduces manual operations and human errors

Helps you plan debugging workflow ahead

Utilises editor features like autocompletion

Makes our debugging experience sharable

Al shopify

Why ruby/debug

Advantage of ruby/debug

+ Maintained by Ruby core

+ Colorised output

+ Powerful breakpoints and tracers

+ Advanced remote debugging support

+ Native VSCode integration

Why ruby/debug

Advantage of ruby/debug Disadvantage of ruby/debug

+ Maintained by Ruby core + Doesn’t work with Fiber

+ Colorised output + Activated when required (Issue #797)
+ Powerful breakpoints and tracers - gem "debug", require: false

+ Advanced remote debugging support + Less learning resources

+ Native VSCode integration

Some Resources

Byebug migration guide ruby/debug cheatsheet

[m] 522

e T4

Pt
Gl aci

peAr
G,

https://st0012.dev/from-byebug-to-ruby-debug https://st0012.dev/ruby-debug-cheatsheet

Happy debugging!

Al shopify

