ruby/debug

The best investment for your productivity

2022-09-09

Al shopify



Who Am 1?

Al shopify



Who Am 1?

« Stan Lo

Al shopify



Who Am 1?

« Stan Lo

» Taiwanese # Live in London &

Al shopify



Who Am 1?

« Stan Lo

» Taiwanese # Live in London &

+ 8th RubyKaigi since 2015 i@/f

Al shopify



Who Am 1?

« Stan Lo

* Taiwanese M Live in London Eif
+ 8th RubyKaigi since 2015 ‘1@/,
* Work at Shopify’s Ruby Developer Experience Team ’5(

Al shopify



Who Am 1?

« Stan Lo

» Taiwanese # Live in London &

- 8th RubyKaigi since 2015 £
* Work at Shopify’s Ruby Developer Experience Team 5(

Al shopify



Who Am 1?

« Stan Lo

» Taiwanese # Live in London &

- 8th RubyKaigi since 2015 £
* Work at Shopify’s Ruby Developer Experience Team 5(

Al shopify



Who Am 1?

« Stan Lo

* Taiwanese M Live in London Eif
- 8th RubyKaigi since 2015 £
* Work at Shopify’s Ruby Developer Experience Team 5(

Al shopify



Who Am 1?

« Stan Lo

. . - % st0012
‘ Talwanese _ lee In London ﬁﬁ v 372 commits 14,325 ++

+ 8th RubyKaigi since 2015 £+
* Work at Shopify’s Ruby Developer Experience Team X

+ Active contributor of ruby/debug

a shopify



Who Am 1?

- Stan Lo
* Taiwanese @ Live in London B8 ~"‘<; Stzomzt e
- 8th RubyKaigi since 2015 &

* Work at Shopify’s Ruby Developer Experience Team 5(
+ Active contributor of ruby/debug

* Maintainer of sentry-ruby =

Al shopify



Who Am I? < Visited Pubs
& Shared - 87 places

« Stan Lo T~ E—
BRENT CROSS

* Taiwanese 8 Live in London & & Qm \ ¢

+ 8th RubyKaigi since 2015 & CRICKLEWOOD

* Work at Shopify’s Ruby Developer Experience Team §€

+ Active contributor of ruby/debug (A40 Q
* Maintainer of sentry-ruby %=
* Explore London and UK’s pubs. Current record: 87/100 ¢! w

BRIXTON

Al shopify



Who Am |I? < Visited Pubs
& Shared - 87 places

« Stan Lo o~ ———
BRENT CROSS

* Taiwanese 8 Live in London & & Qm \ ¢

- 8th RubyKaigi since 2015 & CRICKLEW.OOD

* Work at Shopify’s Ruby Developer Experience Team §f

+ Active contributor of ruby/debug (A40 Q
* Maintainer of sentry-ruby %=

* Explore London and UK’s pubs. Current record: 87/100 @ w
+ Github: @st0012 Twitter: @_st0012

BRIXTON

a shopify



Why is debugging important?

a shopify



Al shopify



Do we keep our debugging skills sharp?

Al shopify



Whi i debuaaing ant?

Do we keep our debugging skills sharp?

Al shopify



| didn’t

Al shopify



binding.pry

| didn’t

Al shopify

binding.pry

binding.pry




binding.pry binding.pry

IS binding.pry
IS | didn’t
IsI

S

S

A shopify



binding.pry binding.pry

IS binding.pry
|SI| | didn’t show-source
Sl S show-source
| S show-source
IS show-source

show-source
show-source

Al shopify



What do Ruby developers use for debugging?

Al shopify



What is your go-to Ruby debugger tool?

Other

Ruby Debug

Byebug

Pry

S
&

7%

N%

o -

1
100

1
200

I I I ! I
300 400 500 600 700

Total

https://rails-hosting.com/2022

I
800

I
900

!
1000

I
1100

I
1200



W PLANET CONTACT
ARGON

proudly
presents

Ruby on Rails Survey 2022

Back in 2009, we invited our community to participate in the first survey about the state of hosting Ruby
on Rails applications. Over the years, we've evolved this to include questions about tools, frameworks,

and workflows in order to see how the environment is changing.

Now in its seventh incarnation, we invite you to take a stroll through the data and our findings. We've also invited members of

the communityto share their thoughts, which we've included throughout the site.

THE RESULTS ARE IN!

https://rails-hosting.com/2022



PLANET CONTACT
ARGON

proudly
presents

p2

Back in 2009, we invit state of hosting Ruby
on Rails applications. ools, frameworks,
and workflows in orde

Now in its seventh incarnat R E S p O N D E NTS also invited members of

the communityto share the

https://rails-hosting.com/2022



What is your go-to Ruby debugger tool?

Other

Ruby Debug

Byebug

Pry

S
&

7%

N%

o -

1
100

1
200

I I I ! I
300 400 500 600 700

Total

https://rails-hosting.com/2022

I
800

I
900

!
1000

I
1100

I
1200



What is your go-to Ruby debugger tool?

Other

Ruby Debug

Byebug

Pry

S
&

7%

N%

o -

1
100

1
200

I I I ! I
300 400 500 600 700

Total

https://rails-hosting.com/2022

I
800

I
900

!
1000

I
1100

I
1200



What is your go-to Ruby debugger tool?

Other n

Pry is a powerful alternative to the standard IRB shell for Ruby. It features syntax
highlighting, a flexible plugin architecture, runtime invocation and source and
documentation browsing.

o 100 200 300 400 500 600 700 800 900 1000 1100 1200

Total

https://rails-hosting.com/2022



Common Debugger Features

- Step-debugging
- Frame Navigation

- Breakpoint Commands

a shopify



Common Debugger Features

- Step-debugging
- Frame Navigation
- Breakpoint Commands

- Scriptable Breakpoint (ruby/debug only)

Al shopify



Example

Ildebugll
“lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb



Example

Ildebugll
"lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb



Example

Ildebugll
“lib.rb"

binding.b

result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb



Example

Ildebugll
“lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb



Example

Ildebugll
“lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb



Example

"debug" - require the debugger
“lib.rb"

binding.b
result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb



Example

"debug" - require the debugger
“lib.rb"

binding.b - set a breakpoint

result = foo(100)

result == 202
puts(“foo works as expected")

puts("foo returned incorrect value: #{result}")

main.rb



Entering a debugging session

[1, 10] main.rb
1] “debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")

=>

(rdbg)




Entering a debugging session

[1, 10] main.rb
1] “debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}"




Entering a debugging session

[1, 10 main.rb
1] "debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")

=>

(rdbg)




Entering a debugging session

[1, 10] main.rb
1] “debug"
2| "lib.rb"
3|

(= 4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")
- . . ‘

(rdbg)




Entering a debugging session

[1, 10] main.rb
1] “debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")

=>

(rdbg)




Entering a debugging session

[1, 10] main.rb
1] “debug"
2| “"lib.rb"
3
4| binding.b

5| result = foo(100)

6|

7| result == 202

8| puts(“foo works as expected")

9|

10| puts("foo returned incorrect value: #{result}")

=>

(rdbg)




Step Debugging

Micro-managing our program

a shopify



Step Debugging

$ ruby main.rb

[1, 10]
1|
2|
3|

main.rb
Ildebugll
"Tib.rb"

4|1 binding.b

5|
6]
7]
8|
9|
10|

result = foo(100)

result == 202
puts("foo works as expected")

puts("foo returned incorrect value: #{result}")

<main>




Step Debugging

$ ruby main.rb

[1, 10]
1|
2|
3|

main.rb
Ildebugll
"Tib.rb"

4|1 binding.b

5|
6]
7]
8|
9|
10|

result = foo(100)

step

puts("foo works as expected")

result == 202

puts("foo returned incorrect value: #{result}")

<main>




Step Debugging

$ ruby main.rb

[1, 10]
1|
2|
3|

main.rb
Ildebugll
"Tib.rb"

4|1 binding.b

5|
6]
7]
8|
9|
10|

result = foo(100)

step

puts("foo works as expected")

result == 202

puts("foo returned incorrect value: #{result}")

next

<main>




Step Debugging

$ ruby main.rb

[1, 10]
1|
2|
3|

main.rb
Ildebugll
"Tib.rb"

4|1 binding.b

5|
6]
7]
8|
9|
10|

result = foo(100)

result == 202
puts("foo works as expected")

puts("foo returned incorrect value: #{result}")

<main>




Step Debugging

(rdbg) s

[1, 10]
1|
2|
3|

main.rb
Ildebugll
"Tib.rb"

4|1 binding.b

S|
6]
7]
8|
9|
10|

result = foo(100)

result == 202
puts("foo works as expected")

puts("foo returned incorrect value: #{result}")

<main>




Step Debugging

(rdbg) s

[1, 10] main.rb
1| “debug"
2| “lib.rb"
3
4|1 binding.b

(::) 5| result = foo(100)
6|
7] result == 202
8| puts("foo works as expected")
9|
10| puts("foo returned incorrect value: #{result}")

<main>




Step Debugging

(rdbg) s

[1, 10]
1|
2|
3|

main.rb
Ildebugll
"Tib.rb"

4|1 binding.b

S|

result = foo(100

result == 202
puts("foo works as expected")

puts("foo returned incorrect value: #{result}")

<main>




Step Debugging

(rdbg) s

[1, 10] lib.rb
1| foo(n)

= 2| bar(n)
3
4|

5] bar(n)
6| baz(n)

baz(n)
num = plus_1(n)

foo

<main>




Step Debugging

(rdbg) s

[1, 10] lib.rb
1| foo(n)

= 2| bar(n)
3
4|

5] bar(n)
6| baz(n)

baz(n)
num = plus_1(n)

foo

<main>




Step Debugging

(rdbg) s

[1, 10] lib.rb
1| foo(n)

= 2| bar(n)
3
4|

5] bar(n)
6| baz(n)

baz(n)
num = plus_1(n)

foo

<main>




Step Debugging

(rdbg) s 2
[5, 14] lib.rb
5] bar(n)
6| baz(n)
7]
8|
9| baz(n)
10 | num = plus_1(n)
11| double(num)
12|
13|
14| plus_1(n)




Step Debugging

(rdbg) s 2
[5, 14] lib.rb
5] bar(n)
6| baz(n)
7]
8]
9| baz(n)
10| num = PbbiGuwdbin)

11| double(num)

12|
13|
14| plus_1(n)




Step Debugging

(rdbg) s 2
[5, 14] lib.rb
5] bar(n)
6| baz(n)
7]
8|
9| baz(n)
10| num = PbbiGuwdbin)
11| double(num)
12|
13|
14| plus_1(n)




Step Debugging

(rdbg) s 2
[5, 14] lib.rb
5] bar(n)
6| baz(n)
7]
8]
9| baz(n)
10| num = PbbiGuwdbin)

11| double(num)

12|
13|
14| plus_1(n)




Step Debugging

(rdbg) n

[6, 15]
6]
7]
8|
9|
10 |

11|
12|
13|
14|
15|

1ib.rb
baz(n)

baz(n)
num = plus_1(n)
double(num)

plus_1(n)
n -1

baz

bar

foo

<main>




Step Debugging

baz(n)
num = plus_1(n)
double(num)

plus_1(n)
n -1

(rdbg) i

%self = main
S 010

num = 99

(rdbg)

baz

bar

foo

<main>




Step Debugging

baz(n)
num = plus_1(n)
double(num)

plus_1(n)
n -1

(rdbg) i
%self = main
S 0]0)

num = 99
(rdbg)

baz

bar

foo

<main>




Step Debugging

baz(n)
num = plus_1(n)
double(num)

plus_1(n)

n -1

baz

bar

foo

<main>




Step Debugging

baz(n)
num = plus_1(n)
double(num)

plus_1(n)

n -1

baz

bar

foo

<main>




Step Debugging



Step Debugging

(rdbg) num
99
(ruby) methods.count

66
(rdbg) 1s
.methods: inspect to_s
locals: n num
(rdbg)




Step Debugging

(rdbgz num

99

(ruby) methods.count

66
(rdbg) 1s
.methods: inspect to_s
locals: n num
(rdbg)




Step Debugging

(rdbgz num

99
(ruby) methods.count

bb
(rdbg) 1s
.methods: inspect to_s
locals: n num
(rdbg)




Step Debugging

(rdbgz num

99
(ruby) methods.count

bob
(rdbg) s
.methods: inspect to_s
locals: n num
(rdbg)




Step Debugging

<main> ===




Step Debugging

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step



Frame Navigation
The best friend of step-debugging

Al shopify



Frame Navigation

double

baz

bar

foo

<main>




Frame Navigation

double

baz

bar

foo

<main>




Frame Navigation

double

baz

bar

foo

<main>




Frame Navigation

double

baz

bar

foo

<main>




Frame Navigation

double

baz

Nl

foo

<main>




Frame Navigation

double

baz

Nl

foo

<main>




Frame Navigation

double

baz

bar

foo

<main>




Frame Navigation

double

baz

double

bar

baz

foo

bar

<main>

foo

<main>




Frame Navigation

double

baz

double

bar

baz

foo

bar

<main>

foo

<main>




Frame Navigation

double

baz

double

bar

baz

foo

bar

<main>

foo

<main>




Frame Navigation

(rdbg) bt

=>

up



Frame Navigation

(rdbg) bt

=>

up



Frame Navigation

up



Frame Navigation

EE N O I (V)

double

baz

bar

foo

<main>




Frame Navigation

EE N O I (V)

double

baz

bar

foo

<main>

\

0 double
1 baz
2 bar
3 foo
4 <main>
__®




Frame Navigation

EE N O I (V)

double == 0 double
baz 1 baz =
bar 2 bar
foo 3 foo
<main> 4 <main>
— .

0 double

1 baz

2 bar

3 foo

4 <main>
I

up




Frame Navigation

baz

bar

foo

<main>




Frame Navigation

(rdbg) s
[14, 20] lib.rb
14| plus_1(n)
15| n -1
16 |
17 |
18| double(n) double
19| n x 2
20 | baz
bar
foo
<main>




Frame Navigation

(rdbg) up
=> 11|  double(num)

=>#1

(rdbg) list

6| baz(n)
double
baz(n)
num = plus_1(n)
double(num) e
bar
plus_1(n) o0
n -1
<main>




Frame Navigation

(rdbg) down
=> 19| n *x 2
=>
(rdbg) list
14| plus_1(n)

15| n -1

16 |

17|

18| double(n)
=> 19| n * 2

20 |
(rdbg)

double

baz

bar

foo

<main>




Frame Navigation

double

baz

bar

foo

<main>




Frame Navigation

double

baz

bar

foo

<main>




Frame Navigation

(rdbg) frame 4 ‘
=> 5| result = foo(100)
=>#4
(rdbg) list
"debug"
“"lib.rb"

4| binding.b

5| result = foo(100)

6

7| result == 202

8| puts("foo works as expected")

9]

10| puts("foo returned incorrect value: #{result}")
(rdbg)

double

baz

bar

foo

<main>




Step-debugging + Frame Navigation

<main> &=




Step-debugging + Frame Navigation

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step



Step-debugging + Frame Navigation

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step



Step-debugging + Frame Navigation

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step



Step-debugging + Frame Navigation

bar Y
foo e foo
<main> == <main> <main>

baz

bar

foo

<main>

R

step step step



Step-debugging + Frame Navigation

bar Y
foo e foo
<main> == <main> <main>

baz

bar

foo

<main>

I

step step step



Step-debugging + Frame Navigation - Commands

Command Command
Step in s[tep] Show backtrace | bt, backtrace
Step over n[ext] Display variables | j[nfo]
Finish fin[ish]
Move to frame flrame] <id>
Move up a frame up

Move down a frame down

Continue c[ontinue]

Al shopify



Breakpoint Commands

Teleporting in our program

a shopify



Breakpoint Commands - Example

show

@post = find_post
binding.b

a shopify



Breakpoint Commands - Example

show

@post = find_post
binding.b

a shopify



Breakpoint Commands - Example

show

@post = find_post
binding.b

a shopify



Breakpoint Commands - Don’t Do This: The Stepping Warrior Way

show

@post = find_p
binding.b

imgfiip.com

Al shopify



pping Warrior Way

O O

# app/
def sh

@pos
bind,

c
# othim
end -

a bug here

img




Breakpoint Commands - Don’t Do This: The Pry Way

¢t 1.0pen app/models/post.rb

2.Put another binding.b in Post#title
show '

@post = f-md_po, 3.Restart the program
binding.b ~ .
i 4.Stop at PostsController#show again

t 5.Type @post.title




Breakpoint Commands - Teleport with breakpoints

show

@post = find_post
binding.b

Al shopify



Breakpoint Commands - Teleport with breakpoints

' s (rdbg) break @post.title .

binding.b

Al shopify



Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]



Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]



Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]



Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]



Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]



Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
del[ete] <id>

dellete]



Breakpoint Commands

On line

On file:line

On a method

On a class method

On an instance’s method

On exceptions

Command

b[reak] <line>

b[reak] <file>:<line>
b[reak] <class>#<method>
b[reak] <class>.<method>
b[reak] <obj>.<method>

catch <exception_class>

Al shopify

List all breakpoints
Delete a breakpoint

Delete all breakpoints

Command
b[reak]
dellete] <id>

dellete]



Step-debugging + Frame Navigation + Breakpoint Commands

baz
bar = bar
foo = foo foo
<main> & <main> <main> <main>

step step step



Step-debugging + Frame Navigation + Breakpoint Commands

ba =
bar — bar
foo — foo foo
<<<<<< ‘ — <main> <main> <main> —
p step step



Step-debugging + Frame Navigation + Breakpoint Commands

Investigation




Step-debugging + Frame Navigation + Breakpoint Commands

Investigation

- = =i
— o

—

Set destination (breakpoint)



Step-debugging + Frame Navigation + Breakpoint Commands

Investigation

T o S ST Triggers breakpoint

continue

Set destination (breakpoint)



Step-debugging + Frame Navigation + Breakpoint Commands

Investigation

—

hary |

— o

Set destination (breakpoint)

continue

Investigation - 2

—

—

hary |

— o




Scriptable Breakpoint

Debug like we program

a shopify



Scriptable Breakpoints

binding.b

a shopify



Scriptable Breakpoints

binding.b
Known actions

a shopify



Scriptable Breakpoints

binding.b

Known actions Unknown actions

a shopify



Scriptable Breakpoints

info
binding.b

Known actions Unknown actions

a shopify



Scriptable Breakpoints

info @foo.bar?
binding.b

Known actions Unknown actions

a shopify



Scriptable Breakpoints

info break foo.baz
binding.b

Known actions Unknown actions

a shopify



Scriptable Breakpoints

info break foo.baz

binding.b
Known actions Unknown actions

break foo.baz

a shopify



Scriptable Breakpoints

info @foo.bar? @break foo.baz
binding.b

Known actions Unknown actions

break foo.baz
break foo.baz

a shopify



Scriptable Breakpoints

info break foo.baz
binding.b

Known actions Unknown actions

a shopify



Scriptable Breakpoints

binding.b (pre: "info ;; foo.bar? ;; break foo.baz")

Known actions Unknown actions

a shopify



Scriptable Breakpoints - The "pre" and "do" keywords

Al shopify



Scriptable Breakpoints - The "pre" and "do" keywords

* binding.b(pre: "cmd")
1. Execute <cmd>

2. Stops at the breakpoint

Al shopify



Scriptable Breakpoints - The "pre" and "do" keywords

* binding.b(pre: "cmd")
1. Execute <cmd>

2. Stops at the breakpoint
* binding.b(do: "cmd")

1. Execute <cmd>

2. Continue the program

a shopify



Scriptable Breakpoints - Multiple Commands

- Separate commands or expressions with ";;"
 binding.b(do: "cmd1 ;; cmd2")

 binding.b(pre: "var = foo ;; bar(var)")

a shopify



Scriptable Breakpoints - Breakpoint Commands Support

- (rdbg) break Foo#bar do: info
- (rdbg) catch StandardError pre: bt

a shopify



Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign( ))
puts("Message is #{msg.inspect}")




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign( ))
puts("Message is #{msg.inspect}")




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign( ))
puts("Message is #{msg.inspect}")




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

1 | | 1
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign( ))
puts("Message is #{msg.inspect}")




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old encryptor = ActiveSupport::MessageEncryptor.new old secret

activesupport-7.0.3.1/1lib/active_support/message_verifier.rb:178:in "verify':
ActiveSupport::MessageVerifier::InvalidSignature (ActiveSupport::MessageVerifier::InvalidSignature)

NEW_CTICTYPLOT .TOLaAQlE OLlU_SCCTCL

1 | | 1
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign( ))
puts("Message is #{msg.inspect}")




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret
binding.b(do: "1 ;; break new_encryptor.decrypt_and_verify pre: i")
1 | ! I

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

info |

new_encryptor.rotate old_secret
binding.b(do: "1 ;; break new_encryptor.decrypt_and_verify pre: i")
1 | ! I

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)

new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

¢info new <break new_encryptor.decrypt_and_verify

new_encryptor.rotate oila_secret
binding.b(do: "1 ;; break new_encryptor.decrypt_and_verify pre: i")
\ | a I I ( ‘ { n

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}") | '




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)

new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

¢info new <break new_encryptor.decrypt_and_verify

new_encryptor.rotate oila_secret
binding.b(do: "1 ;; break new_encryptor.decrypt_and_verify pre: i")
\ | a I I ( ‘ { n

msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}") | '




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)

new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

¢info new <break new_encryptor.decrypt_and_verify

new_enc ryptor .Fotate oLwa_secret

binding.b(idof "1 ;; break new_encryptor.decrypt_and_verify pre: i")

\ | a I I ‘ { n
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}") | '




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)

new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

‘break new_encryptor.decrypt_and_verify

new_encryptor.rotate oLa_secret

binding.b(do: i1 §; break new_encryptor.decrypt_and_verify pre: i1")

\ | a I I ‘ { n
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}") | '




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

binding.b(do: "1 ;;ibreak new_encryptor.decrypt_and_verifyipre: i")

| ! | A I
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")




Scriptable Breakpoints - Example

old secret = .baseb4(24)
old_encryptor = ActiveSupport::MessageEncryptor.new old_secret

new_secret = .baseb4(24)
new_encryptor ActiveSupport: :MessageEncryptor.new new_secret

new_encryptor.rotate old_secret

binding.b(do: "1 ;; break new_encryptor.decrypt_and_verifyipre: i{')

| ! | A I
msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(
puts("Message is #{msg.inspect}")




[12, 21] in test.xb
12| new_encryptor = ActiveSupport: :MessageEncryptor.new new_secret
13|
14| # let the new encryptor rotate to old_secret when needed
15| new_encryptor.rotate old_secret
16|
=> 17| binding.b(do: "i ;; break new_encryptor.decrypt_and_verify pre: i")
18|
19| # the new encryptor should descrypt the message after rotating to the old secret
20| msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(nil))
21| puts("Message is #{msg.inspecti") #=> Message is nil
=>t0 <main> at test.rb:17
(xdbg:binding.break) i
%self = main
old_secret = "2LRx1680gB/023KjhIkFzHck1pSJOHvVL"
old_encryptor = i#<ActiveSupport: :MessageEncryptor:0x00000001046be388 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHvVL", @sign_secret=ni...>
new_secret = "BwIjFx+YSGRbkp9yU219CkLiwVeQJj13"
new_encryptor = #<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=ni...>
msg = nil
(xdbg:binding.break) break new_encryptor.decrypt_and_verify pre: i
#0 ARG new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/
messages/rotator.rb:21 pre: i
[17, 26] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, **options) % || raise
25| end
26|
=>t0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LS0zQ29..., on_rotatio

n=nil, options={%) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22




[12, 21] in test.xb
12| new_encryptor = ActiveSupport: :MessageEncryptor.new new_secret
13|
14| # let the new encryptor rotate to old_secret when needed
15| new_encryptor.rotate old_secret
16|
=> 17| binding.b(do: "i ;; break new_encryptor.decrypt_and_verify pre: i")
18|
19| # the new encryptor should descrypt the message after rotating to the old secret
20| msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(nil))
21| puts("Message is #{msg.inspecti") #=> Message is nil
=>3t0 <main> at test.rb:17
i(rdbg b1nd1ng break) i
Piself = main
bold_secxret = "2LRx1680gB/023KjhIkFzHck1pSIOHVL"
gold_encryptor = #<ActiveSupport: :MessageEncryptor:0x00000001046be388 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHVL", @sign_secret=ni...
; ew_secret = "BwIjFx+YSGRbkp9yU219CkLiwVeQJj13"
Inew_encryptor = #<ActiveSupport: :MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwveQJj13", @sign_secret=ni...
' = nil

and_verity pre: I

0 - Method new_encryptor. decrypt and _verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/
messages/rotator.rb:21 pre: i

[17, 26] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, **options) % || raise
25| end
26|
=>t0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LS0zQ29..., on_rotatio

n=nil, options={%) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22



[12, 21] in test.xb
12| new_encryptor = ActiveSupport: :MessageEncryptor.new new_secret
13|
14| # let the new encryptor rotate to old_secret when needed
15| new_encryptor.rotate old_secret
16|
=> 17| binding.b(do: "i ;; break new_encryptor.decrypt_and_verify pre: i")
18|
19| # the new encryptor should descrypt the message after rotating to the old secret
20| msg = new_encryptor.decrypt_and_verify(old_encryptor.encrypt_and_sign(nil))
21| puts("Message is #{msg.inspecti") #=> Message is nil
=>t0 <main> at test.rb:17
(xdbg:binding.break) i
%self = main
old_secret = "2LRx1680gB/023KjhIkFzHck1pSJOHvVL"
old_encryptor = i#<ActiveSupport: :MessageEncryptor:0x00000001046be388 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHvVL", @sign_secret=ni...>
new_secret = "BwIjFx+YSGRbkp9yU219CkLiwVeQJj13"
new_encryptor = #<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=ni...>
msg = nil
rdbg:binding.break) break new_encryptor.decrypt_and_verity pre: 1
O ELAERLGAEEE new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support
essages/rotator.rb:21 pre: i
[17, 26] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, **options) % || raise
25| end
26|
=>t0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LS0zQ29..., on_rotatio

n=nil, options={%) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22



[17, 56] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support/messages/rotator.Ib

17|
18| module Encryptor
19| include Rotatox
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, **options) % || raise
25| end
26|
=>7t0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LSOzQ29..., on_rotatio

n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22
L <main> at test.rb:20

Stop by #0 new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_
support/messages/rotator.rb:21 pre: i

(rdbg:break) i

%self = #<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=nil, @ciph...>
args = ["Tkxwcjl2MWpFalU@SINYQU1ZWkO3UTO9ILSOzQ29xRWIEZGhySFp6QXVyUGxyYVh3PTO=--8fe73db0fa8ed2ac7d3b53e1980b035290a90ba5" ]
on_rotation = nil

options = {t}

@aead_mode = false

@cipher = "aes-256-cbc"

@digest = "SHA1"

@on_rotation = nil

@options = {}

@rotations = [#<ActiveSupport::MessageEncryptor:0x00000001046bccl8 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHvVL", @sign_secret=nil,
@secret = "BwIjFx+YSGRbkp9yU219CkLiwVeQlj13"

@serializer = Marshal

@sign_secret = nil

@verifier = #<ActiveSupport: :MessageVerifier:0x00000001046bd140 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @digest="SHA1", @ser...>
(zdbg)




f[17, 26] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support/messages/rotator.xb

17|

18| module Encryptor

19| include Rotator

20|

21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)

22| super

24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, **options) % || raise
25| end

; 26|

§=>1+0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTO9LSEzQ29..., on_rotatid
In=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22

i <main> at test.rb:20

top by 0 new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active
bsupport/messages/rotator.rb:21 pre: ;_
(rdbg:break) i
%self = #<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=nil, @ciph...>
args = ["Tkxwcjl2MWpFalU@SINYQU1ZWkO3UTO9ILSOzQ29xRWIEZGhySFp6QXVyUGxyYVh3PTO=--8fe73db0fa8ed2ac7d3b53e1980b035290a90ba5" ]
on_rotation = nil
options = {t}
@aead_mode = false
@cipher = "aes-256-cbc"
@digest = "SHA1"
@on_rotation = nil
@options = {}
@rotations = [#<ActiveSupport::MessageEncryptor:0x00000001046bccl8 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHvVL", @sign_secret=nil,
@secret = "BwIjFx+YSGRbkp9yU219CkLiwVeQJj13"
@serializer = Marshal
@sign_secret = nil
@verifier = #<ActiveSupport::MessageVerifier:0x00000001046bd140 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @digest="SHA1l", @ser...>
(zdbg)

23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature 1




[17, 56] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support/messages/rotator.Ib

17|
18| module Encryptor
19| include Rotator
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, **options) % || raise
25| end
26|
=>7t0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LSOzQ29..., on_rotatio

n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22
L <main> at test.rb:20

Stop by #0 new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_
support/messages/rotator.rb:21 pre: i

f(rdbg:break) i

wiself = iF<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=nil, @ciph...
Jargs = ["Tkxwcjl2MWpFalUBS1INYQU1ZWkO3UTOILSOzQ29xXRWIEZGhySFp6QXVyUGXyYVh3PTO=--8fe73db0fa8ed2ac7d3b53e1980b035290a90ba5" ]
fon_rotation = nil

foptions = {t

daead_mode = false

b@ciphex = "aes-256-chc"

t@digest = "SHA1"

don_rotation = nil

j@options = {}

B@rotations = [#<ActiveSupport::MessageEncryptor:0x00000001046bccl8 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHvVL", @sign_secret=nil,
@secret = "BwIjFx+YSGRbkp9yU219CkLiwveQdj13"

b@serializer = Marshal

f@sign_secret = nil

boverifier = #<ActiveSupport::MessageVerifier:0x00000001046bd140




[17, 56] in ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1ib/active_support/messages/rotator.Ib

17|
18| module Encryptor
19| include Rotatox
20|
21| def decrypt_and_verify(xargs, on_rotation: @on_rotation, **options)
= 22| super
23| rescue MessageEncryptor::InvalidMessage, MessageVerifier::InvalidSignature
24| run_rotations(on_rotation) { |encryptor| encryptor.decrypt_and_verify(xargs, **options) % || raise
25| end
26|
=>7t0 ActiveSupport: :Messages: :Rotator: :Encryptoritdecrypt_and_verify(args=["Tkxwcjl2MWpFalUOSINYQU1ZWkO3UTE9LSOzQ29..., on_rotatio

n=nil, options={}) at ~/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_support/messages/rotator.rb:22
L <main> at test.rb:20

Stop by #0 new_encryptor.decrypt_and_verify at /Users/hung-wulo/.gem/ruby/3.1.2/gems/activesupport-7.0.3.1/1lib/active_
support/messages/rotator.rb:21 pre: i

(rdbg:break) i

%self = #<ActiveSupport::MessageEncryptor:0x00000001046bd348 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @sign_secret=nil, @ciph...>
args = ["Tkxwcjl2MWpFalU@SINYQU1ZWkO3UTO9ILSOzQ29xRWIEZGhySFp6QXVyUGxyYVh3PTO=--8fe73db0fa8ed2ac7d3b53e1980b035290a90ba5" ]
on_rotation = nil

options = {t}

@aead_mode = false

@cipher = "aes-256-cbc"

@digest = "SHA1"

@on_rotation = nil

@options = {}

@rotations = [#<ActiveSupport::MessageEncryptor:0x00000001046bccl8 @secret="2LRx1680gB/023KjhIkFzHck1pSJOHvVL", @sign_secret=nil,
@secret = "BwIjFx+YSGRbkp9yU219CkLiwVeQlj13"

@serializer = Marshal

@sign_secret = nil

ifier = #<ActiveSupport::MessageVerifier:0x00000001046bd140 @secret="BwIjFx+YSGRbkp9yU219CkLiwVeQJj13", @digest="SHA1", @ser...>

(zavg) ]




Scriptable Breakpoints - Benefits

Reduces manual operations and human errors

Helps you plan debugging workflow ahead

Utilises editor features like autocompletion

Makes our debugging experience sharable

Al shopify



Why ruby/debug

Advantage of ruby/debug

+ Maintained by Ruby core

+ Colorised output

+ Powerful breakpoints and tracers

+ Advanced remote debugging support

+ Native VSCode integration



Why ruby/debug

Advantage of ruby/debug Disadvantage of ruby/debug

+ Maintained by Ruby core + Doesn’t work with Fiber
+ Colorised output « Less flexible thread control
+ Powerful breakpoints and tracers * Less learning resouces

+ Advanced remote debugging support

+ Native VSCode integration



Why ruby/debug

Advantage of ruby/debug Disadvantage of ruby/debug

+ Maintained by Ruby core + Doesn’t work with Fiber

+ Colorised output + Less flexible thread control

+ Powerful breakpoints and tracers \rning resouces
+ Advanced remote debugging support

+ Native VSCode integration

https://st0012.dev/from-byebug-to-ruby-debug



Wrapping Up

- Step-debugging

- Frame Navigation

Al shopify



Wrapping Up

- Step-debugging
Detailed investigation
- Frame Navigation

Al shopify



Wrapping Up

- Step-debugging
Detailed investigation
- Frame Navigation

- Breakpoint Commands @ Keeps the flow uninterrupted

a shopify



Wrapping Up

- Step-debugging
Detailed investigation
- Frame Navigation

- Breakpoint Commands @ Keeps the flow uninterrupted

- Scriptable Breakpoint Program our debugging session

a shopify



Happy debugging!

Al shopify



